Optimizing Diabetes Data Insights Through Kmapper-Based Topological Networks: A Decision Analytics Approach for Predictive and Prescriptive Modeling
DOI:
https://doi.org/10.31181/msa1120241Keywords:
Topological Data Analysis, Mapper Algorithm, Diabetes Patient Data, Machine Learning, High-Dimensional Data VisualizationAbstract
A highly effective technique for identifying and showing structures in high-dimensional datasets is topological data analysis. The Kmapper software creates overlaying clustering graphs and topological networks to facilitate the investigation of such information. The objective of the work was to visualize a dataset of diabetes patients that included information on blood pressure, glucose levels, and pregnancies using the Kmapper software. Afterward, it applied topological data analysis to see if any underlying structures or patterns could be established. The preprocessed dataset of diabetic patients was acquired via Kaggle. Kmapper was run with a difference of parameter settings, which includes 0.4 overlap, 15 hypercubes, and varying numbers of PCA components (1, 2, and 3). We investigated the generated graph visualizations. Although two PCA components were used, the topological graphs disclosed likely intriguing highlights such as three peaks. To understand these illustrated structures in the background of the diabetes data, additional investigation is mandatory. Also with every aspect considered, Kmapper worked well for using topological representations to contribute intuition into the high-dimensional dataset.
Downloads
References
Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46(2), 255-308. DOI: https://doi.org/10.1090/S0273-0979-09-01249-X
Ghrist, R. (2008). Barcodes: The persistent topology of data. Bulletin of the American Mathematical Society, 45(1), 61-75. DOI: https://doi.org/10.1090/S0273-0979-07-01191-3
Edelsbrunner, H., & Harer, J. (2010). Computational topology: An introduction. American Mathematical Society. DOI: https://doi.org/10.1090/mbk/069
Chazal, F., Guibas, L. J., Oudot, S. Y., & Skraba, P. (2017). Scalar field analysis over point cloud data. Discrete & Computational Geometry, 57(3), 642-688.
Camara, P. G., Rocha, G. V., & Mahmudi, M. (2016). Topological data analysis of protein-protein interaction networks. In Portuguese Conference on Pattern Recognition (pp. 17-28). Springer, Cham.
Abid, M. & Saqlain, M. (2023). Utilizing Edge Cloud Computing and Deep Learning for Enhanced Risk Assessment in China’s International Trade and Investment. International Journal of Knowledge and Innovation Studies, 1(1), 1-9. DOI: https://doi.org/10.56578/ijkis010101
Nielson, J. L., Paquette, J., Liu, A. W., Guandique, C. F., Tovar, C. A., Inoue, K., & Laubenbacher, R. (2015). Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nature Communications, 6(1), 1-16. DOI: https://doi.org/10.1038/ncomms9581
Rucco, M., Castiglione, F., Merelli, E., & Pettini, M. (2020). Topological computational patterns from statistical phenomena. International Journal of Modern Physics C, 31(01), 2050001.
Ichinomiya, T., Obayashi, I., & Hiraoka, Y. (2017). Persistent homology analysis of craze formation. Journal of the Mechanics and Physics of Solids, 104, 139-156. DOI: https://doi.org/10.1103/PhysRevE.95.012504
Hiraoka, Y., Nakamura, T., Hirata, A., Escolar, E. G., Matsue, K., & Nishiura, Y. (2016). Hierarchical structures of amorphous solids characterized by persistent homology. Proceedings of the National Academy of Sciences, 113(26), 7035-7040. DOI: https://doi.org/10.1073/pnas.1520877113
Turner, K., Mukherjee, S., & Boyer, D. M. (2014). Persistent homology transform for modeling shapes and surfaces. Information and Inference: A Journal of the IMA, 3(4), 310-344. DOI: https://doi.org/10.1093/imaiai/iau011
Abid, M., & Saqlain, M. (2023). Decision-Making for the Bakery Product Transportation using Linear Programming. Spectrum of Engineering and Management Sciences, 1(1), 1-12. DOI: https://doi.org/10.31181/sems1120235a
Chung, M. K., Villavicencio, H. A., & Dalal, N. (2009). Synthetic digraph model of the cardiovascular system: Topological analysis. In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, (pp. 389-392). IEEE.
Meharunnisa, Saqlain, M., Abid, M., Awais, M., & Stevi’c, ˇZ. (2023). Analysis of software effort estimation by machine learning techniques. Ing’enierie des Syst‘emes d’Information, 28, 1445-1457. DOI: https://doi.org/10.18280/isi.280602
Choudhury, M., Anand, A., Narayanan, S., & Shukla, A. (2020). TOPOBLAZE: High-performance topological data analysis via blaze. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-13).
Hofer, C., Kwitt, R., Niethammer, M., & Uhl, A. (2019). Deep learning with topological signatures. Advances in Neural Information Processing Systems (pp. 1633-1643).
Carriere, M., Oudot, S. Y., & Ovsjanikov, M. (2020). Stable topological signatures for shapes
using persistence diagrams. Computers & Graphics, 84, 179-189.
Hofer, C., Kwitt, R., Niethammer, M., & Dixit, M. (2017). Connectome filtering using truncated algebraic topology. International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 392-400). Springer, Cham.
Carriere, M., Brebion, P., & Oudot, S. (2019). Sliced Wasserstein kernel for persistence diagrams of point clouds. International Conference on Artificial Intelligence and Statistics (pp. 1996-2004). PMLR.
Hajij, M., Younes, G., Asaad, A. T., & Narayanan, S. (2019). Topological signatures for 3D mesh processing: Knitted hat data augmentation. IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 767-776). IEEE.
Scharathkumaker, Y., Hamaya, T., Kim, D., Nagarajan, V., & Nakamura, T. (2021). Data-driven multi-scale crystalline structure modeling for materials design. Nature Communications, 12(1), 1-11.
McGee, F., Ghrist, R., Hyde, S., & Koertge, A. (2020). Topology computation of cubical sets via simplicial sets. Foundations of Computational Mathematics, 20(4), 775-828.
Kanari, L., D lotko, P., Scolamiero, M., Levi, R., Shillcock, J., Hess, K., & Chacholska, H. (2020). Topologically-based functional principal component analysis with applications to the characterization of biomolecular conformational motions. Biophysics Reports, 6(1), 1-16.
Park, C., & Kwon, Y. K. (2020). Topological data analysis with fuzzy clustering and graph algorithm. IEEE Access, 8, 53195-53205.
Anai, H., Nagarajan, V., Sekeroglu, K., Mukherjee, S., & Nakamura, T. (2021). Topological data analysis of synthetic polymers: Dimensionality reduction and machine learning. The Journal of Chemical Physics, 154(6), 064901.
Topaz, C. M., Ziegelmeier, L., & Halverson, T. (2015). Topological data analysis of biological aggregation models. PloS one, 10(5), e0126383. DOI: https://doi.org/10.1371/journal.pone.0126383
Bauer, U., Kerber, M., & Reininghaus, J. (2017). Clear and compress: Computing persistent homology in chunks. In Topological Methods in Data Analysis and Visualization III (pp. 103-117). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-04099-8_7
Oudot, S. Y. (2017). Persistence theory: from quiver representations to data analysis (Vol. 241). Providence, RI: American Mathematical Society.
Abid, M., & Shahid, M. (2024). Data-driven evaluation of background radiation safety using machine learning and statistical analysis. Big Data and Computing Visions, 4(2), 110-134.
Sizemore, A. E., Giusti, C., Kahn, A., Vettel, J. M., Betzel, R. F., & Bassett, D. S. (2019). Cliques and cavities in the human connectome. Journal of Computational Neuroscience, 47(1), 115-145. DOI: https://doi.org/10.1007/s10827-017-0672-6
Haq, H. B. U., Akram, W., Irshad, M. N., Kosar, A., & Abid, M. (2024). Enhanced Real-Time Facial Expression Recognition Using Deep Learning. Acadlore Transactions on Machine Learning, 3(1), 24-35. DOI: https://doi.org/10.56578/ataiml030103
Carriere, M., Cuturi, M., & Oudot, S. (2015). Sliced Wasserstein kernel for persistence diagrams. In International Conference on Machine Learning (pp. 2140-2148). PMLR.
Carlsson, G., & Ishkhanov, T. (2020). Topological data analysis of contagion maps for examination of space-time permutation entropy. Spatial Statistics, 38, 100444. DOI: https://doi.org/10.1016/j.spasta.2020.100444
Zhang, Z., Panagakis, I., & Pantic, M. (2020). Learning deep topological features for lip tracking and geometric expression representation using persistence homology. IEEE Transactions on Multimedia, 23, 2056-2071.
Edelsbrunner, H., & Harer, J. (2008). Persistent homology—a survey. Contemporary Mathematics, 453, 257-282. DOI: https://doi.org/10.1090/conm/453/08802
Bendich, P., Marron, J. S., Miller, E., Pieloch, A., & Skwerer, S. (2016). Persistent homology analysis of brain artery data. Annals of Applied Statistics, 10(1), 198-218. DOI: https://doi.org/10.1214/15-AOAS886
Seversky, L. M., Davis, S., & Berger, M. (2016). On time-series topological data analysis: New data and opportunities. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 1093-1100). IEEE. DOI: https://doi.org/10.1109/CVPRW.2016.131
Hofer, C., Kwitt, R., Niethammer, M., & Uhl, A. (2019). Deep learning with topological signatures. Advances in Neural Information Processing Systems, 32.
Clough, J. R., Oksuz, I., Byrne, N., Zimmer, V. A., Schnabel, J. A., & King, A. P. (2020). A topological loss function for deep-learning based image segmentation using persistent homological features. International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 504-513). Springer, Cham.
Hamid, M. T., & Abid, M. (2024). Decision Support System for Mobile Phone Selection Utilizing Fuzzy Hypersoft Sets and Machine Learning. Journal of Intelligent Management Decisions, 3(2), 104-115. DOI: https://doi.org/10.56578/jimd030204
Lum, P. Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., & Carlsson, G. (2013). Extracting insights from the shape of complex data using topology. Scientific Reports, 3(1), 1-7. DOI: https://doi.org/10.1038/srep01236
Biedl, T., Cadık, M., Kouril, D., Krivanek, J., & Vilanova Vidal, E. (2020). Towards understanding data through topological triangulation. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1242-1252.
Abid, M., & Shahid, M. (2024). Tumor Detection in MRI Data using Deep Learning Techniques for Image Classification and Semantic Segmentation. Sustainable Machine Intelligence Journal, 9, 1-13. DOI: https://doi.org/10.61356/SMIJ.2024.9380
Rizvi, A. H., Camara, P. G., Kandror, E. K., Roberts, T. J., Schieren, I., Manikas, T., & Rickman, P. (2017). Single-cell topological RNA-seq analysis reveals insights into cellular transcriptomes. Nature Biotechnology, 35(6), 551-560. DOI: https://doi.org/10.1038/nbt.3854
Lavin, C., Siddiqi, K., Valencia, G., & Cofer, J. (2021). Topological protein model explorer (TopP-MEX): Towards interpretable machine learning models for protein structure prediction. Computational Topology in Data Analysis (pp. 167-196). Springer, Cham.
Zhang, S., Hou, Y., Zhang, S., & Zhang, M. (2017). Fuzzy control model and simulation for non-linear supply chain system with lead times.Complexity, 2017(1), 2017634. DOI: https://doi.org/10.1155/2017/2017634
Zhang, S., Zhang, C., Zhang, S., & Zhang, M. (2018). Discrete switched model and fuzzy robust control of dynamic supply chain network. Complexity, 2018(1), 3495096. DOI: https://doi.org/10.1155/2018/3495096
Zhang, S., Zhang, P., & Zhang, M. (2019). Fuzzy emergency model and robust emergency strategy of supply chain system under random supply disruptions. Complexity, 2019(1), 3092514. DOI: https://doi.org/10.1155/2019/3092514
Sarwar, M., & Li, T. (2019). Fuzzy fixed point results and applications to ordinary fuzzy differential equations in complex valued metric spaces. Hacettepe Journal of Mathematics and Statistics, 48(6), 1712-1728.
Xia, Y., Wang, J., Meng, B., & Chen, X. (2020). Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems. Applied Mathematics and Computation, 379, 125225. DOI: https://doi.org/10.1016/j.amc.2020.125225
Gao, M., Zhang, L., Qi, W., Cao, J., Cheng, J., Kao, Y., et al. (2020). SMC for semi-Markov jump TS fuzzy systems with time delay. Applied Mathematics and Computation, 374, 125001. DOI: https://doi.org/10.1016/j.amc.2019.125001
Zhang, S., & Zhang, M. (2020). Mitigation of Bullwhip Effect in Closed-Loop Supply Chain Based on Fuzzy Robust Control Approach. Complexity, 2020(1), 1085870. DOI: https://doi.org/10.1155/2020/1085870
Zhang, N., Qi, W., Pang, G., Cheng, J., & Shi, K. (2022). Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks. Applied Mathematics and Computation, 427, 127153. DOI: https://doi.org/10.1016/j.amc.2022.127153
Sun, Q., Ren, J., & Zhao, F. (2022). Sliding mode control of discrete-time interval type-2 fuzzy Markov jump systems with the preview target signal. Applied Mathematics and Computation, 435, 127479. DOI: https://doi.org/10.1016/j.amc.2022.127479
Duan, Z. X., Liang, J. L., & Xiang, Z. R. (2022). H control for continuous-discrete systems in TS fuzzy model with finite frequency specifications. Discrete and Continuous Dynamical Systems, 64(1), 1-18.
Zhang, S., Li, S., Zhang, S., & Zhang, M. (2017). Decision of Lead-Time Compression and Stable Operation of Supply Chain. Complexity, 2017(1), 7436764. DOI: https://doi.org/10.1155/2017/7436764
Diao, Y., & Zhang, Q. (2021). Optimization of Management Mode of Small-and Medium-Sized Enterprises Based on Decision Tree Model. Journal of Mathematics, 2021(1), 2815086. DOI: https://doi.org/10.1155/2021/2815086
Huang, B., Miao, J., & Li, Q. (2022). A Vetoed Multi-objective Grey Target Decision Model with Application in Supplier Choice. Journal of Grey System, 34(4).
Abidin, M. Z., Marwan, M., Ullah, N., & Mohamed Zidan, A. (2023). Well-Posedness in Variable-Exponent Function Spaces for the Three-Dimensional Micropolar Fluid Equations. Journal of Mathematics, 2023(1), 4083997. DOI: https://doi.org/10.1155/2023/4083997
Marwan, M., Han, M., Dai, Y., & Cai, M. (2024). The Impact of Global Dynamics On The Fractals Of A Quadrotor Unmanned Aerial Vehicle (Quav) Chaotic System. Fractals, 32(02), 2450043. DOI: https://doi.org/10.1142/S0218348X24500439
Ali, G., Marwan, M., Rahman, U. U., & Hleili, M. (2024). Investigation Of Fractional-Ordered Tumor-Immune Interaction Model Via Fractional-Order Derivative. Fractals, 32(06), 1-10. DOI: https://doi.org/10.1142/S0218348X24501196
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Abid, Muhammad Saqlain (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.









