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Uncertainty modeling underpins decision-making across diverse domains, andover the years a rich array of theoretical frameworks has emerged to capture itsmany facets. Notable among these are Fuzzy Sets, Rough Sets, Hyperrough Sets,Vague Sets, Intuitionistic Fuzzy Sets, Hesitant Fuzzy Sets, Neutrosophic Sets, andPlithogenic Sets, alongside ongoing advances in hybrid and higher-order uncer-tain frameworks. Risk management—the systematic process of identifying, quan-tifying, and mitigating potential losses—is indispensable in contexts ranging fromproject planning and system engineering to business operations. Although fuzzy-logic approaches to risk assessment have been widely studied, existing treat-ments often lack fully formalized, probability-theoretic foundations. In this paper,we introduce rigorously defined mathematical frameworks for fuzzy risk manage-ment and for neutrosophic risk management. Each framework extends the clas-sical risk-optimization model by embedding fuzzy or neutrosophic membershipstructures into coherent risk measures, thereby enabling graded preference anal-ysis and enhanced expressiveness. Our formulations not only generalize the crisprisk-management paradigm but also provide a unified basis for future theoreticaldevelopments and practical applications of fuzzy and neutrosophic risk models.
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1. Preliminaries
This section provides an introduction to the foundational concepts and definitions required for thediscussions in this paper. In addition, all concepts addressed herein are assumed to be finite ratherthan infinite.
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1.1 Fuzzy Set and Neutrosophic Set

A fuzzy set assigns to each element a membership degree in the interval [0, 1], thereby capturinguncertainty through more granular membership levels rather than a strict binary classification [1–4].As extensions of the classical fuzzy set, various frameworks have been proposed, including sphericalfuzzy sets [5, 6], hyperfuzzy sets [7–9], picture fuzzy sets [10], bipolar fuzzy sets [11, 12], and others.Below, we present the definitions for these and related extended frameworks.
Definition 1.1 (Fuzzy Set). [1, 13] A Fuzzy set τ in a non-empty universe Y is a mapping τ : Y → [0, 1].A fuzzy relation on Y is a fuzzy subset δ in Y × Y . If τ is a fuzzy set in Y and δ is a fuzzy relation on Y ,then δ is called a fuzzy relation on τ if

δ(y, z) ≤ min{τ(y), τ(z)} for all y, z ∈ Y.

Neutrosophic Sets extend Fuzzy Sets by incorporating the concept of indeterminacy, thereby ad-dressing situations that are neither entirely true nor entirely false. This framework provides a moreflexible representation of uncertainty and ambiguity [14–17]. Their definitions are presented below.
Definition 1.2 (Neutrosophic Set). [18] Let X be a non-empty set. A Neutrosophic Set (NS) A on X ischaracterized by three membership functions:

TA : X → [0, 1], IA : X → [0, 1], FA : X → [0, 1],

where for each x ∈ X , the values TA(x), IA(x), and FA(x) represent the degrees of truth, indetermi-nacy, and falsity, respectively. These values satisfy the following condition:
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Example 1.3 (Supplier Selection under a Neutrosophic Decision Rule). Consider a procurement man-ager choosing one supplier from
X = {A, B, C}.

For each supplier x ∈ X , experts elicit a neutrosophic triple (T (x), I(x), F (x)) ∈ [0, 1]3, where
T measures evidence for suitability (quality, delivery reliability, cost stability), F measures evidenceagainst suitability (nonconformance, delays, price volatility), and I captures indeterminacy (conflict-ing or missing data). These satisfy 0 ≤ T (x) + I(x) + F (x) ≤ 3.The assessments (from audits, historical KPIs, and market reports) are:

Supplier x T (x) I(x) F (x) T (x)+I(x)+F (x)A 0.70 0.20 0.10 1.00B 0.55 0.35 0.25 1.15C 0.40 0.30 0.50 1.20

All rows obey 0 ≤ T + I + F ≤ 3.To aggregate the neutrosophic information into a single decision score, use weights wT , wI , wF ≥
0 with wT + wI + wF = 1 and define

S(x) := wT T (x) + wI

(
1− I(x)

)
+ wF

(
1− F (x)

)
.

Here we choose wT = 0.6, wI = 0.2, wF = 0.2: we prioritize positive evidence, but penalize indeter-minacy and falsity via complements.We compute S(x) explicitly for each supplier.
224



Management Science AdvancesVolume 2, Issue 1 (2025) 223-238
1) Supplier A:

S(A) = 0.6 · 0.70 + 0.2 · (1− 0.20) + 0.2 · (1− 0.10)

= 0.42 + 0.16 + 0.18 = 0.76.

2) Supplier B:
S(B) = 0.6 · 0.55 + 0.2 · (1− 0.35) + 0.2 · (1− 0.25)

= 0.33 + 0.13 + 0.15 = 0.61.

3) Supplier C:
S(C) = 0.6 · 0.40 + 0.2 · (1− 0.30) + 0.2 · (1− 0.50)

= 0.24 + 0.14 + 0.10 = 0.48.

Therefore the neutrosophic ranking is
A (0.76) ≻ B (0.61) ≻ C (0.48),

so the manager selects Supplier A. The computation shows how the indeterminacy I and falsity Freduce a candidate’s score even when T is moderate, providing a transparent, graded decision rulewithin the Neutrosophic Set framework.
2. Result of This Paper

The results of this paper are presented as follows.
2.1 Mathematical Model of Risk Management

Risk Management is the process of identifying, assessing, and mitigating potential losses to min-imize the impact on organizational objectives[19–21]. The following are some well-known derivedforms of risk management:
• Financial Risk Management: Focuses on identifying and mitigating risks related to market fluc-tuations, credit exposure, and liquidity[22–24].
• Operational Risk Management: Addresses failures in internal processes, people, or systems,including technical errors and human mistakes[25–27].
• Strategic Risk Management: Involves managing risks that affect long-term business goals andcompetitive positioning[28–30].
• Cyber Risk Management: Deals with threats to information security, including data breaches,cyberattacks, and IT system vulnerabilities[31–33].
• Supply Chain Risk Management: Focuses on disruptions in the supply chain, such as delays,shortages, and supplier failures[34–36].
• Project Risk Management: Manages potential risks that could impact project objectives, suchas scope, time, cost, and quality[37–39].
The definition of the Mathematical Model of Risk Management is described as follows.
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Definition2.1 (Risk Management). (cf.[19–21]) Let (Ω,F , P )beaprobability spacemodeling all sourcesof uncertainty, and letD ⊆ Rn be a nonempty, closed, convex set of admissible decision vectors x. Foreach x ∈ D, let

L(x) : Ω −→ R

be the (measurable) loss randomvariable incurred by decisionx, assumed essentially bounded: L(x) ∈
L∞(Ω,F , P ). A risk measure is a mapping

ρ : L∞(Ω,F , P ) −→ R

quantifying the risk of a loss. We say ρ is a coherent risk measure if for allX, Y ∈ L∞ and all constants
m ∈ R, it satisfies:

1. Monotonicity: IfX ≤ Y almost surely then ρ(X) ≤ ρ(Y ).
2. Translation-invariance: ρ(X +m) = ρ(X)−m.
3. Positive homogeneity: ρ(λX) = λ ρ(X) for all λ ≥ 0.
4. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Important special cases include the Value-at-Risk at level α ∈ (0, 1),
VaRα(X) = inf

{
m ∈ R : P (X +m ≤ 0) ≥ α

}
,

and the Conditional Value-at-Risk (also Expected Shortfall)
CVaRα(X) =

1

1− α

∫ 1

α

VaRu(X) du = min
η∈R

{
η + 1

1−α
E[(X − η)+]

}
.

Then the risk management problem is the optimization
min
x∈D

ρ
(
L(x)

) subject to any additional constraints, e.g. gi(x) ≤ 0, hj(x) = 0.

Example 2.2 (Scenario-Based CVaR Portfolio Optimization). CVaR Portfolio Optimization minimizesexpected losses beyond a confidence level, balancing risk and return in financial portfolio manage-ment[40, 41]. Consider a portfolio of three assets with weights x = (w1, w2, w3) satisfying∑3
i=1wi =

1 and wi ≥ 0. We model uncertainty by S = 5 equiprobable scenarios s = 1, . . . , 5, each withprobability Ps = 1/5. The vector of asset returns in scenario s is Rs = (Rs
1, R

s
2, R

s
3), given by

Scenario s Rs
1 Rs

2 Rs
3 Ps

1 0.05 0.02 0.01 0.2
2 −0.02 0.03 0.04 0.2
3 0.10 0.07 0.05 0.2
4 0.00 −0.01 0.02 0.2
5 0.03 0.04 0.06 0.2

In each scenario, the portfolio loss is
Ls(w) = −

3∑
i=1

wi R
s
i ,
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so that larger positive values represent worse outcomes. For confidence level α = 0.9, the CVaR canbe written

CVaR0.9

(
L(w)

)
= min

η∈R

{
η + 1

1−0.9

5∑
s=1

Ps

[
Ls(w)− η

]
+

}
.

This yields the following linear program:
min
w,η,ξ

η + 10
5∑

s=1

Ps ξs,

subject to ξs ≥ Ls(w)− η, ξs ≥ 0, s = 1, . . . , 5,
3∑

i=1

wi = 1, wi ≥ 0, i = 1, 2, 3.

Solving this LP (e.g. via any standard solver) yields the optimal weights
w∗ = (w∗

1, w
∗
2, w

∗
3) = (0.50, 0.30, 0.20),

with η∗ = 0.012 and hence
CVaR0.9

(
L(w∗)

)
= 0.012.

That is, under the worst 10% of scenarios the average loss is 1.2% of portfolio value.
2.2 Mathematical Framework for Fuzzy Risk Management

We define the Mathematical Framework for Fuzzy Risk Management as follows. The integration offuzzy logic with risk management has been extensively examined in various research studies [42–44].
Definition 2.3 (Mathematical Framework for Fuzzy Risk Management). Let (Ω,F , P ) be a probabilityspace andD ⊆ Rn a nonempty closed convex decision set. Let

L : D −→ L∞(Ω,F , P ), x 7→ L(x)

be the mapping which assigns to each decision x ∈ D its (essentially bounded) loss random variable
L(x). Let

ρ : L∞(Ω,F , P ) −→ R
be a (coherent) risk measure as in the crisp framework. Finally, let

Φ : R −→ [0, 1]

be a continuous, strictly decreasing “satisfaction–risk” mapping (e.g. Φ(r) = e−λr for some λ > 0).Then we define the fuzzy decision set
A =

{
(x, µA(x)) | x ∈ D

}
,

where the membership function µA : D → [0, 1] is
µA(x) = Φ

(
ρ
(
L(x)

))
.

The fuzzy risk management problem is to choose
x∗ ∈ argmax

x∈D
µA(x),

equivalentlyminx∈D ρ
(
L(x)

) with gradual preference captured by Φ.
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Example 2.4 (Fuzzy CVaR–based Project Risk Choice). We illustrate Definition (Mathematical Frame-work for Fuzzy Risk Management) with a concrete, fully worked example.Probability space: five equiprobable scenarios s = 1, . . . , 5 with Ps = 0.2. Decision set: D =
{Standard plan S, Risk–mitigated plan R} (two feasible project strategies).Scenario losses (in thousands of USD; positive = worse):

Scenario s 1 2 3 4 5
Ls(S) 30 10 50 20 40
Ls(R) 25 15 28 22 27

Risk measure: ρ = CVaRα with α = 0.8. Since each scenario has probability 0.2, the tail proba-bility 1 − α = 0.2 equals exactly one scenario. Hence, for any option X ∈ {S,R}, if we denote theordered losses by ℓ(1)(X) ≤ · · · ≤ ℓ(5)(X), then
CVaR0.8

(
L(X)

)
= E[L(X) |worst 20%] = ℓ(5)(X).

Compute for S:
{Ls(S)} = {30, 10, 50, 20, 40} ⇒ {ℓ(k)(S)} = {10, 20, 30, 40, 50}

CVaR0.8

(
L(S)

)
= ℓ(5)(S) = 50.

Compute for R:
{Ls(R)} = {25, 15, 28, 22, 27} ⇒ {ℓ(k)(R)} = {15, 22, 25, 27, 28}

CVaR0.8

(
L(R)

)
= ℓ(5)(R) = 28.

Fuzzy satisfaction mapping: choose Φ(r) = e−λr with λ = 0.02. The fuzzy membership of eachdecision x ∈ D is
µA(x) = Φ

(
ρ(L(x))

)
= exp

(
−0.02 · CVaR0.8(L(x))

)
.

Explicit values:
µA(S) = exp

(
−0.02× 50

)
= e−1 = 0.3678794412 . . . ,

µA(R) = exp
(
−0.02× 28

)
= e−0.56 ≈ 0.5712090638.

Conclusion (argmax):
x∗ ∈ arg max

x∈{S,R}
µA(x) = { R }, µA(R) ≈ 0.5712 > µA(S) ≈ 0.3679.

Thus, under CVaR0.8 and the exponential satisfaction map, the risk–mitigated plan R is preferred.The calculation makes explicit (i) the tail–risk evaluation via CVaR0.8, and (ii) the graded fuzzy prefer-ence via Φ.
Example 2.5 (Fuzzy CVaR–based Cybersecurity Investment Choice). We give a second concrete in-stance of the fuzzy risk framework.Probability space: six equiprobable threat scenarios s = 1, . . . , 6 with Ps = 1/6. Decision set:
D = {Unmitigated U, MitigatedM}.Scenario losses (in thousands of USD; larger = worse). The mitigated option M includes a fixedcontrol cost of 10 (e.g. hardening, monitoring) plus the residual incident loss.
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Scenario s 1 2 3 4 5 6
Ls(U) 4 8 12 20 35 70Residual loss 3 5 6 9 14 24

Ls(M) = 10 + Residual 13 15 16 19 24 34

Risk measure: ρ = CVaRα with α = 5
6
. Since Ps = 1/6 for all s and 1−α = 1/6, the CVaR equalsthe conditional expectation on the worst 1 scenario; equivalently, the maximum scenario loss:

CVaR5/6

(
L(U)

)
= max{4, 8, 12, 20, 35, 70} = 70, CVaR5/6

(
L(M)

)
= max{13, 15, 16, 19, 24, 34} = 34.

Fuzzy satisfaction map: choose Φ(r) = e−λr with λ = 0.03. Then the fuzzy membership of eachdecision x ∈ D is
µA(x) = Φ

(
ρ(L(x))

)
= exp

(
−0.03 · CVaR5/6(L(x))

)
.

Explicit numerical evaluation:
µA(U) = exp(−0.03×70) = e−2.10 ≈ 0.122456, µA(M) = exp(−0.03×34) = e−1.02 ≈ 0.360447.

Therefore,
x∗ ∈ arg max

x∈{U,M}
µA(x) = { M },

since µA(M) ≈ 0.360447 > µA(U) ≈ 0.122456. This makes explicit (i) the tail–risk evaluation via
CVaR5/6, and (ii) the graded fuzzy preference via the decreasing Φ.
Theorem 2.6. The fuzzy framework above strictly generalizes the crisp risk management model andendows the set of decisions with a fuzzy–set structure. In particular, if one choosesΦ(r) = 1{r≤R0} forsome threshold R0, then µA(x) ∈ {0, 1} andA reduces to the usual feasible set {x ∈ D : ρ(L(x)) ≤
R0}.
Proof. By construction, µA : D → [0, 1] satisfies the standard axioms of a fuzzy membership func-tion. The crisp risk management problem corresponds to maximizing µA when Φ is the indicator of asublevel set of ρ. Thus every feasible solution of the crisp model has membership 1 and every infeasi-ble solution has membership 0. Continuity and strict monotonicity of Φ ensure that intermediate riskvalues yield intermediate degrees of acceptability, so that the fuzzy framework is a genuine extensionof the crisp one.
Theorem 2.7 (Monotonicity Preservation). Let µA(x) = Φ

(
ρ(L(x))

) where Φ: R → [0, 1] is strictlydecreasing and ρ is any risk measure. Then for any x, y ∈ D,
ρ
(
L(x)

)
≤ ρ

(
L(y)

)
=⇒ µA(x) ≥ µA(y).

Proof. Since Φ is strictly decreasing, whenever r1 ≤ r2 we have Φ(r1) ≥ Φ(r2). Setting r1 = ρ(L(x))and r2 = ρ(L(y)) yields the desired implication.
Theorem 2.8 (Boundedness and Extremal Values). Under the same hypotheses, themembership func-tion µA satisfies

0 ≤ µA(x) ≤ 1 ∀x ∈ D.

Moreover, if limr→−∞ Φ(r) = 1 and limr→+∞ Φ(r) = 0, then supx∈D µA(x) = 1 and infx∈D µA(x) =
0.
Proof. By definition Φ takes values in [0, 1], so 0 ≤ µA(x) ≤ 1. If there exists a sequence {xk} with
ρ(L(xk)) → −∞, then µA(xk) = Φ(ρ(L(xk))) → 1, proving supµA = 1. Similarly, any sequencewith ρ(L(xk)) → +∞ yields µA(xk) → 0, giving inf µA = 0.
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Theorem 2.9 (Continuity). If x 7→ ρ(L(x)) is continuous on D ⊂ Rn and Φ is continuous on R, then
µA : D → [0, 1] is continuous.
Proof. µA is the composition Φ ◦ (ρ ◦ L). The composition of continuous functions is continuous,hence µA is continuous on D.
Definition 2.10 (Quasi-concavity). Let D ⊆ Rn be convex. A function f : D → R is quasi-concave iffor all x, y ∈ D and all λ ∈ [0, 1],

f
(
λx+ (1− λ)y

)
≥ min{ f(x), f(y)}.

Equivalently, all its upper level sets {x ∈ D : f(x) ≥ α} are convex.
Theorem 2.11 (Quasi-concavity). AssumeD is convex, ρ ◦L is a convex function onD, andΦ is strictlydecreasing. Then µA(x) = Φ(ρ(L(x))) is quasi-concave onD: for any x, y ∈ D and λ ∈ [0, 1],

µA

(
λx+ (1− λ)y

)
≥ min{µA(x), µA(y)}.

Proof. Convexity of f(x) = ρ(L(x)) gives
f
(
λx+ (1− λ)y

)
≤ max{f(x), f(y)}.

Since Φ is strictly decreasing,
Φ
(
f(λx+ (1− λ)y)

)
≥ min{Φ(f(x)),Φ(f(y))} = min{µA(x), µA(y)},

which is the definition of quasi-concavity.
Theorem 2.12 (Existence of an Optimal Decision). IfD ⊂ Rn is nonempty, compact, and µA is contin-uous, then there exists at least one x∗ ∈ D such that µA(x

∗) = maxx∈D µA(x).
Proof. A continuous real-valued function on a compact set attains its maximum. Since µA is continu-ous and D is compact, the Weierstrass theorem guarantees existence of x∗.
Theorem2.13 (Crisp-Limit Specialization). LetΦR0(r) = ⊮{r≤R0} for some thresholdR0. ThenµA(x) ∈
{0, 1} and

{x ∈ D : µA(x) = 1} = {x ∈ D : ρ(L(x)) ≤ R0},
recovering the classical risk-feasible set.
Proof. By definition, ΦR0(r) = 1 if and only if r ≤ R0, and 0 otherwise. Hence µA(x) = 1 ⇐⇒
ρ(L(x)) ≤ R0, which is exactly the crisp feasible region.
Definition 2.14 (Lipschitz Continuity). A function f : D → R on a metric space (D, ∥ · ∥) is Lipschitzcontinuous with constant L ≥ 0 if for all x, y ∈ D,∣∣f(x)− f(y)

∣∣ ≤ L ∥x− y∥.

Theorem 2.15 (Lipschitz Continuity). Suppose ρ ◦L is Lipschitz continuous onD with constant Lρ, and
Φ is Lipschitz on R with constant LΦ. Then µA is Lipschitz onD with constant LΦ Lρ.
Proof. For any x, y ∈ D,∣∣µA(x)− µA(y)

∣∣ = ∣∣Φ(f(x))− Φ(f(y))
∣∣ ≤ LΦ

∣∣f(x)− f(y)
∣∣ ≤ LΦ Lρ ∥x− y∥.

where f = ρ ◦ L.
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2.3 Mathematical Framework for Neutrosophic Risk Management

We define the Mathematical Framework for Neutrosophic Risk Management as follows. The inte-gration of Neutrosophic logic with risk management has been extensively examined in various researchstudies [45–47].
Definition 2.16 (Mathematical Framework for Neutrosophic Risk Management). Let (Ω,F , P ) be aprobability space andD ⊆ Rn a nonempty closed convex decision set. Define the loss mapping

L : D −→ L∞(Ω,F , P ), x 7→ L(x),

and let
ρ : L∞(Ω,F , P ) −→ R

be a coherent risk measure. Further, let
ΦT , ΦI , ΦF : R −→ [0, 1]

be continuous functions generating, respectively, the truth-, indeterminacy-, and falsity-membershipdegrees. Then for each x ∈ D define
T (x) = ΦT

(
ρ(L(x))

)
, I(x) = ΦI

(
ρ(L(x))

)
, F (x) = ΦF

(
ρ(L(x))

)
.

The neutrosophic decision set is
N =

{ (
x, (T (x), I(x), F (x))

)
| x ∈ D

}
.

Given nonnegative weights wT , wI , wF with wT + wI + wF = 1, define the aggregated neutrosophicscore
S(x) = wT T (x) + wI

(
1− I(x)

)
+ wF

(
1− F (x)

)
.

The neutrosophic risk management problem is the optimization
x∗ ∈ argmax

x∈D
S(x).

Example 2.17 (Neutrosophic CVaR Portfolio Selection). Consider a three-asset portfoliox = (w1, w2, w3)with wi ≥ 0,∑i wi = 1. Model returns by S = 5 equiprobable scenarios s, each with probability 0.2,and let
Ls(x) = −

3∑
i=1

wiR
s
i ,

so that ρ(X) = CVaR0.95(X). Choose
ΦT (r) = e−10r, ΦI(r) =

1
2

(
1− e−10r

)
, ΦF (r) = 1− e−5r,

and weights wT = 0.5, wI = 0.3, wF = 0.2. Numerical solution yields CVaR0.95(L(x
∗)) ≈ 0.075,hence

T (x∗) = e−0.75 ≈ 0.472, I(x∗) ≈ 0.5 (1− e−0.75) ≈ 0.264, F (x∗) = 1− e−0.375 ≈ 0.313,

and aggregated score
S(x∗) = 0.5 · 0.472 + 0.3 · (1− 0.264) + 0.2 · (1− 0.313) ≈ 0.687.

This example illustrates how truth, indeterminacy, and falsity degrees combine to guide selection.
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Example 2.18 (Insurance Coverage Decision under Neutrosophic Risk). Let D = [0, 1] be the set ofinsurance coverage levels x, where x = 1 is full coverage and x = 0 no coverage. Loss given a claimis a random variable Y with

P (Y = 1000) = 0.7, P (Y = 10000) = 0.3.

Then for each x ∈ D,
L(x) = (1− x)Y,

and we choose the risk measure ρ(X) = CVaR0.9(X). Define neutrosophic membership generators
ΦT (r) = exp(−r/1000), ΦI(r) =

1
2

(
1− exp(−r/1000)

)
, ΦF (r) = 1− exp(−r/2000),

and weights wT = 0.6, wI = 0.2, wF = 0.2.For x = 0.8 (80% coverage), the scenario losses are
L1 = 0.2× 1000 = 200, L2 = 0.2× 10000 = 2000,

each with probabilities 0.7 and 0.3. The worst 10% of outcomes lies entirely in the L2-scenario, so
ρ(L(0.8)) = 2000. Hence
T (0.8) = exp(−2) = 0.1353, I(0.8) = 1

2
(1−exp(−2)) = 0.4323, F (0.8) = 1−exp(−1) = 0.6321,

and the aggregated score is
S(0.8) = 0.6 ·0.1353 + 0.2 ·(1−0.4323) + 0.2 ·(1−0.6321) ≈ 0.0812+0.1135+0.0736 = 0.2683.

Example 2.19 (Inventory Order Quantity under Neutrosophic Risk). LetD = {50, 100, 150} be possibleorder quantitiesQ. DemandD has three equiprobable scenarios:
P (D = 50) = P (D = 100) = P (D = 150) = 1

3
.

Holding cost is $1 per unit leftover, shortage cost is $5 per unit unmet demand. Thus
L(Q) =

{
(Q−D) · 1, Q ≥ D,

(D −Q) · 5, Q < D.

We take ρ(X) = CVaR0.9(X) again, and set
ΦT (r) = e−r/200, ΦI(r) =

1
2

(
1− e−r/200

)
, ΦF (r) = 1− e−r/400,

with weights wT = 0.5, wI = 0.3, wF = 0.2.ForQ = 100:
L1 = (100− 50) · 1 = 50, L2 = 0, L3 = (150− 100) · 5 = 250,

each with probability 1/3. The worst 10% lies in the L3-scenario, so ρ(L(100)) = 250. Then
T (100) = e−1.25 = 0.2865, I(100) = 1

2
(1− 0.2865) = 0.3568, F (100) = 1− e−0.625 = 0.4660,

and
S(100) = 0.5 ·0.2865 + 0.3 ·(1−0.3568) + 0.2 ·(1−0.4660) ≈ 0.1433+0.1930+0.1068 = 0.4431.
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Theorem 2.20. The neutrosophic framework strictly generalizes the fuzzy risk management modeland endows the decision set with a neutrosophic structure. In particular, if one chooses

ΦI(r) = 0, ΦF (r) = 1− ΦT (r), wT = 1, wI = 0, wF = 0,

thenN collapses to the fuzzy decision set { (x,ΦT (ρ(L(x)))) | x ∈ D} and the neutrosophic problemreduces tomaxx∈D ΦT (ρ(L(x))).

Proof. Under the specializations ΦI ≡ 0 and ΦF (r) = 1 − ΦT (r), the membership triple becomes
(T (x), 0, 1− T (x)). With wT = 1 and wI = wF = 0, the aggregated score is

S(x) = T (x) = ΦT

(
ρ(L(x))

)
,

recovering exactly the fuzzy-risk objective. Hence the neutrosophic model contains the fuzzy modelas a special case while, for general ΦI ,ΦF , it provides independent indeterminacy and falsity degrees,verifying the genuine extension.
Theorem 2.21 (Monotonicity of Neutrosophic Score). Suppose ΦT : R → [0, 1] is strictly decreasing,
ΦI ,ΦF : R → [0, 1] are strictly increasing, and weights wT , wI , wF ≥ 0 satisfy wT + wI + wF = 1.Then for any x, y ∈ D,

ρ
(
L(x)

)
≤ ρ

(
L(y)

)
=⇒ S(x) ≥ S(y).

Proof. Let rx = ρ(L(x)) and ry = ρ(L(y)). If rx ≤ ry, then
ΦT (rx) ≥ ΦT (ry), ΦI(rx) ≤ ΦI(ry), ΦF (rx) ≤ ΦF (ry),

so
1− ΦI(rx) ≥ 1− ΦI(ry), 1− ΦF (rx) ≥ 1− ΦF (ry).

Therefore
S(x) = wTΦT (rx) + wI

(
1− ΦI(rx)

)
+ wF

(
1− ΦF (rx)

)
≥ wTΦT (ry) + wI

(
1− ΦI(ry)

)
+ wF

(
1− ΦF (ry)

)
= S(y).

Theorem 2.22 (Boundedness). For all x ∈ D,
0 ≤ T (x), I(x), F (x) ≤ 1, 0 ≤ S(x) ≤ 1.

Proof. By definition each Φ maps into [0, 1], so T, I, F ∈ [0, 1]. Since S is a convex combination
S = wTT + wI(1− I) + wF (1− F ), and each term lies in [0, 1], it follows S(x) ∈ [0, 1].
Theorem 2.23 (Continuity). If x 7→ ρ(L(x)) is continuous onD and each ΦT ,ΦI ,ΦF is continuous on
R, then the functions T, I, F : D → [0, 1] and S : D → [0, 1] are continuous.
Proof. Each of T = ΦT ◦ (ρ ◦ L), I = ΦI ◦ (ρ ◦ L), and F = ΦF ◦ (ρ ◦ L) is a composition of con-tinuous maps, hence continuous. S is a weighted sum of these continuous functions and is thereforecontinuous.
Theorem 2.24 (Existence of an Optimal Decision). If D ⊂ Rn is nonempty and compact, then thereexists at least one x∗ ∈ D such that

S(x∗) = max
x∈D

S(x).
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Proof. By the Weierstrass extreme value theorem, any continuous real-valued function on a compactset attains its maximum.
Theorem 2.25 (Lipschitz Continuity). Assume ρ ◦ L is Lipschitz on D with constant Lρ, and each
ΦT ,ΦI ,ΦF is Lipschitz on R with constant LΦ. Then S is Lipschitz onD with constant LΦ Lρ:∣∣S(x)− S(y)

∣∣ ≤ LΦ Lρ ∥x− y∥, ∀x, y ∈ D.

Proof. Write rx = ρ(L(x)), ry = ρ(L(y)). Then
|S(x)− S(y)| ≤ wT |ΦT (rx)− ΦT (ry)|+ wI |ΦI(rx)− ΦI(ry)|+ wF |ΦF (rx)− ΦF (ry)|

≤ (wT + wI + wF )LΦ |rx − ry| = LΦ |rx − ry| ≤ LΦ Lρ ∥x− y∥.

3. Conclusion and Future Work
In this paper, we presented formally defined mathematical frameworks for Fuzzy Risk Managementand Neutrosophic Risk Management, highlighting their theoretical foundations and key properties.For future work, we plan to investigate further generalizations, including Hyperfuzzy Sets [48–52],Hesitant Fuzzy Sets[53, 54], Vague Sets[55, 56], Shadowed Sets[57–60], Quadri-Partitioned Neutro-sophic Sets [61, 62], Double-Valued Neutrosophic Sets [63–66], Plithogenic Sets [67, 68], and Hyper-neutrosophic Sets [69, 70]. We also anticipate advancing computational experiments and algorithmdevelopment to demonstrate practical applications of these models.
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[6] Kutlu Gündoğdu, F., & Kahraman, C. (2019). Spherical fuzzy sets and spherical fuzzy topsismethod. Journal of intelligent & fuzzy systems, 36(1), 337–352. https://doi.org/10.3233/JIFS-181401[7] Nazari, Z., & Mosapour, B. (2018). The entropy of hyperfuzzy sets. Journal of Dynamical Systemsand Geometric Theories, 16(2), 173–185. https://doi.org/10.1080/1726037X.2018.1436270[8] Liu, Y. L., Kim, H. S., & Neggers, J. (2017). Hyperfuzzy subsets and subgroupoids. Journal of In-telligent & Fuzzy Systems, 33, 1553–1562. https://api.semanticscholar.org/CorpusID:27349855[9] Fujita, T. (2025a). Advancing uncertain combinatorics through graphization, hyperization, anduncertainization: Fuzzy, neutrosophic, soft, rough, and beyond. Biblio Publishing.[10] Cuong, B. C., & Kreinovich, V. (2013). Picture fuzzy sets-a new concept for computational intel-ligence problems. 2013 third world congress on information and communication technologies(WICT 2013), 1–6. https://doi.org/10.1109/WICT.2013.7113099[11] Zhang, W.-R. (1994). Bipolar fuzzy sets and relations: A computational framework for cognitivemodeling and multiagent decision analysis. NAFIPS/IFIS/NASA ’94. Proceedings of the First In-ternational Joint Conference of The North American Fuzzy Information Processing Society Bian-nual Conference. The Industrial Fuzzy Control and Intellige, 305–309. 10.1109/IJCF.1994.375115[12] Akram, M. (2011). Bipolar fuzzy graphs. Information sciences, 181(24), 5548–5564. https://doi.org/10.1016/j.ins.2011.07.037[13] Zadeh, L. A. (1996). Fuzzy logic, neural networks, and soft computing. In Fuzzy sets, fuzzy logic,and fuzzy systems: Selected papers by lotfi a zadeh (pp. 775–782). World Scientific. https://doi.org/s://doi.org/10.1145/175247.175255[14] Fujita, T., & Smarandache, F. (2024). A review of the hierarchy of plithogenic, neutrosophic, andfuzzy graphs: Survey and applications. InAdvancing uncertain combinatorics through graphiza-tion, hyperization, and uncertainization: Fuzzy, neutrosophic, soft, rough, and beyond (secondvolume). Biblio Publishing.[15] Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016a). Single valued neutrosophic graphs.Journal of New theory, (10), 86–101. https://doi.org/10.5281/zenodo.50940[16] Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016b). Interval valued neutrosophic graphs.Critical Review, XII, 2016, 5–33. https://fs.unm.edu/IntervalValuedNeutrosophicGraphs-CR12.pdf[17] Fujita, T., & Smarandache, F. (2025b). Reconsideration of neutrosophic social science and neu-trosophic phenomenology with non-classical logic. Infinite Study.[18] Smarandache, F. (1999). A unifying field in logics: Neutrosophic logic. In Philosophy (pp. 1–141).American Research Press.[19] Power, M. (2004). The risk management of everything. The Journal of Risk Finance, 5(3), 58–65. https://doi.org/10.1108/eb023001[20] Stulz, R. M. (2008). Rethinking risk management. In Corporate risk management (pp. 87–120).Columbia University Press. https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/0/30211/files/2016/05/Rethinking-Risk-Management-1cnhar7.pdf[21] Rasmussen, J. (1997). Risk management in a dynamic society: A modelling problem. Safety sci-ence, 27(2-3), 183–213. https://doi.org/10.1016/S0925-7535(97)00052-0[22] Alexander, C. (2005). The present and future of financial risk management. Journal of FinancialEconometrics, 3(1), 3–25. https://econpapers.repec.org/article/oupjfinec/v 3a3 3ay 3a20053ai 3a1 3ap 3a3-25.htm[23] Christoffersen, P. (2011). Elements of financial risk management. Academic press.[24] Malz, A. M. (2011). Financial risk management: Models, history, and institutions. John Wiley &Sons.[25] Moosa, I. A. (2007). Operational risk management. Springer.

235

https://doi.org/10.3233/JIFS-181401
https://doi.org/10.3233/JIFS-181401
https://doi.org/10.1080/1726037X.2018.1436270
https://api.semanticscholar.org/CorpusID:27349855
https://doi.org/10.1109/WICT.2013.7113099
10.1109/IJCF.1994.375115
https://doi.org/10.1016/j.ins.2011.07.037
https://doi.org/10.1016/j.ins.2011.07.037
https://doi.org/s://doi.org/10.1145/175247.175255
https://doi.org/s://doi.org/10.1145/175247.175255
https://doi.org/10.5281/zenodo.50940
https://fs.unm.edu/IntervalValuedNeutrosophicGraphs-CR12.pdf
https://fs.unm.edu/IntervalValuedNeutrosophicGraphs-CR12.pdf
https://doi.org/10.1108/eb023001
https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/0/30211/files/2016/05/Rethinking-Risk-Management-1cnhar7.pdf
https://bpb-us-w2.wpmucdn.com/u.osu.edu/dist/0/30211/files/2016/05/Rethinking-Risk-Management-1cnhar7.pdf
https://doi.org/10.1016/S0925-7535(97)00052-0
https://econpapers.repec.org/article/oupjfinec/v_3a3_3ay_3a2005_3ai_3a1_3ap_3a3-25.htm
https://econpapers.repec.org/article/oupjfinec/v_3a3_3ay_3a2005_3ai_3a1_3ap_3a3-25.htm


Management Science AdvancesVolume 2, Issue 1 (2025) 223-238
[26] Beroggi, G. E., & Wallace, W. A. (1994). Operational risk management: A new paradigm for de-cision making. IEEE Transactions on Systems, Man, and Cybernetics, 24(10), 1450–1457. https://doi.org/10.1109/21.310528[27] Hoffman, D. G. (2002). Managing operational risk: 20 firmwide best practice strategies. JohnWiley & Sons. https://www.wiley.com/en- us/Managing+Operational+Risk%5C%3A+20+Firmwide+Best+Practice+Strategies-p-9780471412687[28] Frigo, M. L., & Anderson, R. J. (2011). What is strategic risk management? Strategic finance,92(10), 21. http : / / www . markfrigo . org / What is Strategic Risk Management - StrategicFinance - April 2011.pdf[29] Damodaran, A. (2008). Strategic risk taking: A framework for risk management. Pearson Pren-tice Hall.[30] Beasley, M. S., Frigo, M. L., & Litman, J. (2007). Strategic risk management: Creating and pro-tecting value. Strategic Finance, 88(11), 24. https : / / doi . org / https : / / www. proquest . com /openview/bfceef5d9167440c9376504c7da9d507/1?pq-origsite=gscholar&cbl=48426[31] Kosub, T. (2015). Components and challenges of integrated cyber risk management. Zeitschriftfür die gesamte Versicherungswissenschaft, 104, 615–634. https://doi.org/10.1007/s12297-015-0316-8[32] Lee, I. (2020). Internet of things (iot) cybersecurity: Literature review and iot cyber risk man-agement. Future internet, 12(9), 157. https://ideas.repec.org/a/gam/jftint/v12y2020i9p157-d415422.html[33] Eling, M., McShane, M., & Nguyen, T. (2021). Cyber risk management: History and future re-search directions.RiskManagement and Insurance Review, 24(1), 93–125. https://onlinelibrary.wiley.com/doi/epdf/10.1111/rmir.12169[34] Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: A literaturereview. International journal of production research, 53(16), 5031–5069. https://doi.org/10.1080/00207543.2015.1030467[35] Sodhi, M. S., Son, B.-G., & Tang, C. S. (2012). Researchers’ perspectives on supply chain riskmanagement. Production and operations management, 21(1), 1–13. https://doi.org/10.1111/j.1937-5956.2011.01251.x[36] Finch, P. (2004). Supply chain risk management. Supply chain management: an InternationalJournal, 9(2), 183–196. https://doi.org/10.1108/13598540410527079[37] Chapman, C. (2003). Project risk management 2nd. John Wiley & Sons, Inc.[38] Cooper, D. (2005). Project risk management guidelines. John wiley & sons, Inc.[39] Carbone, T. A., & Tippett, D. D. (2004). Project risk management using the project risk fmea.Engineering management journal, 16(4), 28–35. https://doi .org /10.1080/10429247.2004.11415263[40] Krokhmal, P., Palmquist, J., & Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. Journal of risk, 4, 43–68. https://www.smartquant .com/references/VaR/var34.pdf[41] Salahi, M., Mehrdoust, F., & Piri, F. (2013). Cvar robust mean-cvar portfolio optimization. In-ternational Scholarly Research Notices, 2013(1), 570950. https://www.iises.net/download/Soubory/soubory-puvodni/Salahi.pdf[42] Nasirzadeh, F., Afshar, A., Khanzadi, M., & Howick, S. (2008). Integrating system dynamics andfuzzy logic modelling for construction risk management. Construction management and eco-nomics, 26(11), 1197–1212. https://doi.org/10.1080/01446190802459924[43] Zlateva, P., Velev, D., & Raeva, L. (2015). A fuzzy logic method for assessment of risk manage-ment capability. International Journal of Innovation, Management and Technology, 6(4), 260.https://doi.org/10.7763/IJIMT.2015.V6.612

236

https://doi.org/10.1109/21.310528
https://doi.org/10.1109/21.310528
https://www.wiley.com/en-us/Managing+Operational+Risk%5C%3A+20+Firmwide+Best+Practice+Strategies-p-9780471412687
https://www.wiley.com/en-us/Managing+Operational+Risk%5C%3A+20+Firmwide+Best+Practice+Strategies-p-9780471412687
http://www.markfrigo.org/What_is_Strategic_Risk_Management_-_Strategic_Finance_-_April_2011.pdf
http://www.markfrigo.org/What_is_Strategic_Risk_Management_-_Strategic_Finance_-_April_2011.pdf
https://doi.org/https://www.proquest.com/openview/bfceef5d9167440c9376504c7da9d507/1?pq-origsite=gscholar&cbl=48426
https://doi.org/https://www.proquest.com/openview/bfceef5d9167440c9376504c7da9d507/1?pq-origsite=gscholar&cbl=48426
https://doi.org/10.1007/s12297-015-0316-8
https://doi.org/10.1007/s12297-015-0316-8
https://ideas.repec.org/a/gam/jftint/v12y2020i9p157-d415422.html
https://ideas.repec.org/a/gam/jftint/v12y2020i9p157-d415422.html
https://onlinelibrary.wiley.com/doi/epdf/10.1111/rmir.12169
https://onlinelibrary.wiley.com/doi/epdf/10.1111/rmir.12169
https://doi.org/10.1080/00207543.2015.1030467
https://doi.org/10.1080/00207543.2015.1030467
https://doi.org/10.1111/j.1937-5956.2011.01251.x
https://doi.org/10.1111/j.1937-5956.2011.01251.x
https://doi.org/10.1108/13598540410527079
https://doi.org/10.1080/10429247.2004.11415263
https://doi.org/10.1080/10429247.2004.11415263
https://www.smartquant.com/references/VaR/var34.pdf
https://www.smartquant.com/references/VaR/var34.pdf
https://www.iises.net/download/Soubory/soubory-puvodni/Salahi.pdf
https://www.iises.net/download/Soubory/soubory-puvodni/Salahi.pdf
https://doi.org/10.1080/01446190802459924
https://doi.org/10.7763/IJIMT.2015.V6.612


Management Science AdvancesVolume 2, Issue 1 (2025) 223-238
[44] Pokoradi, L. (2002). Fuzzy logic-based risk assessment. https : / / www . researchgate . net /profile / Laszlo - Pokoradi / publication / 267548987 Fuzzy logic - based risk assessment / links /54575d4c0cf2cf5164808694/Fuzzy-logic-based-risk-assessment.pdf[45] Metawa, N., & Mourad, N. (2022). Neutrosophic-based multi-objectives model for financialrisk management. International Journal of Neutrosophic Science (IJNS), 19(1). https://doi.org/10.54216/IJNS.190114[46] Salamai, A. A. (2025). A robust neutrosophic model for risk management in livestock supplychains: A case study towards sustainable practices. Neutrosophic Sets and Systems, 78, 191–205. https://doi.org/10.5281/zenodo.14241621[47] Junaid, M., Xue, Y., Syed, M. W., Li, J. Z., & Ziaullah, M. (2019). A neutrosophic ahp and topsisframework for supply chain risk assessment in automotive industry of pakistan. Sustainability,12(1), 154. https://doi.org/10.3390/su12010154[48] Jun, Y. B., Hur, K., & Lee, K. J. (2017). Hyperfuzzy subalgebras of bck/bci-algebras. Annals ofFuzzy Mathematics and Informatics. http://www.afmi.or.kr/articles in %5C%20press/2017-11/AFMI-H-170927R2/AFMI-H-1709272R2.pdf[49] Song, S.-Z., Kim, S. J., & Jun, Y. B. (2017). Hyperfuzzy ideals in bck/bci-algebras. Mathematics,5(4), 81. https://doi.org/10.3390/math5040081[50] Fujita, T., & Smarandache, F. (2025c). A concise introduction to hyperfuzzy, hyperneutrosophic,hyperplithogenic, hypersoft, and hyperrough sets with practical examples. Neutrosophic Setsand Systems, 80, 609–631. https://doi.org/10.5281/zenodo.14759385[51] MAHARIN, M. (2020). An over view on hyper fuzzy subgroups. Scholar: National School ofLeadership, 9(1.2).[52] Ghosh, J., & Samanta, T. K. (2012). Hyperfuzzy sets and hyperfuzzy group. Int. J. Adv. Sci. Technol,41, 27–37. http://article.nadiapub.com/IJAST/vol41/3.pdf[53] Xu, Z. (2014). Hesitant fuzzy sets theory (Vol. 314). Springer. https://doi.org/10.1007/978-3-319-04711-9[54] Torra, V., & Narukawa, Y. (2009). On hesitant fuzzy sets and decision. 2009 IEEE internationalconference on fuzzy systems, 1378–1382. https://doi.org/10.1109/FUZZY.2009.5276884[55] Lu, A., & Ng, W. (2005). Vague sets or intuitionistic fuzzy sets for handling vague data: Whichone is better? International conference on conceptual modeling, 401–416. https://doi.org/10.1007/11568322 26[56] Gau, W.-L., & Buehrer, D. J. (1993). Vague sets. IEEE transactions on systems, man, and cyber-netics, 23(2), 610–614. https://doi.org/10.1109/21.229476[57] Pedrycz, W. (1998). Shadowed sets: Representing and processing fuzzy sets. IEEE Transactionson Systems, Man, and Cybernetics, Part B (Cybernetics), 28(1), 103–109. https://doi.org /10.1109/3477.658584[58] Fujita, T. (2025b). Shadowed offset: Integrating offset and shadowed set frameworks for en-hanced uncertainty modeling. Spectrum of Operational Research, 1–17. https://doi .org /10.31181/sor4152[59] Yang, J., & Yao, Y. (2021). A three-way decision based construction of shadowed sets fromatanassov intuitionistic fuzzy sets. Information Sciences, 577, 1–21. https://doi.org/10.1016/j.ins.2021.06.065[60] Patel, H. R., & Shah, V. A. (2021). General type-2 fuzzy logic systems using shadowed sets: A newparadigm towards fault-tolerant control. 2021 Australian & New Zealand Control Conference(ANZCC), 116–121. https://doi.org/10.1109/ANZCC53563.2021.9628361[61] Radha, R., Mary, A. S. A., & Smarandache, F. (2021). Quadripartitioned neutrosophic pythagoreansoft set. International Journal of Neutrosophic Science (IJNS) Volume 14, 2021, 11. https : / /americaspg.com/article/pdf/667

237

https://www.researchgate.net/profile/Laszlo-Pokoradi/publication/267548987_Fuzzy_logic-based_risk_assessment/links/54575d4c0cf2cf5164808694/Fuzzy-logic-based-risk-assessment.pdf
https://www.researchgate.net/profile/Laszlo-Pokoradi/publication/267548987_Fuzzy_logic-based_risk_assessment/links/54575d4c0cf2cf5164808694/Fuzzy-logic-based-risk-assessment.pdf
https://www.researchgate.net/profile/Laszlo-Pokoradi/publication/267548987_Fuzzy_logic-based_risk_assessment/links/54575d4c0cf2cf5164808694/Fuzzy-logic-based-risk-assessment.pdf
https://doi.org/10.54216/IJNS.190114
https://doi.org/10.54216/IJNS.190114
https://doi.org/10.5281/zenodo.14241621
https://doi.org/10.3390/su12010154
http://www.afmi.or.kr/articles_in_%5C%20press/2017-11/AFMI-H-170927R2/AFMI-H-1709272R2.pdf
http://www.afmi.or.kr/articles_in_%5C%20press/2017-11/AFMI-H-170927R2/AFMI-H-1709272R2.pdf
https://doi.org/10.3390/math5040081
https://doi.org/10.5281/zenodo.14759385
http://article.nadiapub.com/IJAST/vol41/3.pdf
https://doi.org/10.1007/978-3-319-04711-9
https://doi.org/10.1007/978-3-319-04711-9
https://doi.org/10.1109/FUZZY.2009.5276884
https://doi.org/10.1007/11568322_26
https://doi.org/10.1007/11568322_26
https://doi.org/10.1109/21.229476
https://doi.org/10.1109/3477.658584
https://doi.org/10.1109/3477.658584
https://doi.org/10.31181/sor4152
https://doi.org/10.31181/sor4152
https://doi.org/10.1016/j.ins.2021.06.065
https://doi.org/10.1016/j.ins.2021.06.065
https://doi.org/10.1109/ANZCC53563.2021.9628361
https://americaspg.com/article/pdf/667
https://americaspg.com/article/pdf/667


Management Science AdvancesVolume 2, Issue 1 (2025) 223-238
[62] Hussain, S., Hussain, J., Rosyida, I., & Broumi, S. (2022). Quadripartitioned neutrosophic softgraphs. In Handbook of research on advances and applications of fuzzy sets and logic (pp. 771–795). IGI Global. https://doi.org/10.4018/978-1-7998-7979-4.ch034[63] He, H. (2025). A novel approach to assessing art education teaching quality in vocational col-leges based on double-valued neutrosophic numbers and multi-attribute decision-making withtree soft sets.Neutrosophic Sets and Systems, 78, 206–218. https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=2970&context=nss journal[64] Fujita, T. (2025c). Triple-valued neutrosophic set, quadruple-valued neutrosophic set, quintuple-valued neutrosophic set, and double-valued indetermsoft set. Neutrosophic Systems with Ap-plications, 25(5), 3. https://doi.org/10.61356/2993-7159.1276[65] Kandasamy, I. (2018). Double-valued neutrosophic sets, their minimum spanning trees, andclustering algorithm. Journal of Intelligent systems, 27(2), 163–182. https://doi.org/10.1515/jisys-2016-0088[66] Khan, Q., Liu, P., & Mahmood, T. (2018). Some generalized dice measures for double-valuedneutrosophic sets and their applications. Mathematics, 6(7), 121. https://doi.org /10.3390/math6070121[67] Abualhomos, M., Shihadeh, A., A Abubaker, A., Al-Husban, K., Fujita, T., Alsaraireh, A. A., Shat-nawi, M., & Al-Husban, A. (2025). Unified framework for type-n extensions of fuzzy, neutro-sophic, and plithogenic offsets: Definitions and interconnections. Journal of Fuzzy Extensionand Applications. https://doi.org/10.22105/jfea.2025.514314.1858[68] Sultana, F., Gulistan, M., Ali, M., Yaqoob, N., Khan, M., Rashid, T., & Ahmed, T. (2023). A study ofplithogenic graphs: Applications in spreading coronavirus disease (covid-19) globally. Journalof ambient intelligence and humanized computing, 14(10), 13139–13159. https://doi.org /10.1007/s12652-022-03772-6[69] Fujita, T., & Smarandache, F. (2025d). Considerations of hyperneutrosophic set and forestneu-trosophic set in livestock applications and proposal of new neutrosophic sets. Precision Live-stock, 2, 11–22. https://doi.org/10.61356/j.pl.2025.2484[70] Fujita, T., & Smarandache, F. (2025e). Hyperneutrosophic set and forest hyperneutrosophic setwith practical applications in agriculture. Optimization in Agriculture, 2, 10–21. https://doi.org/10.61356/j.oia.2025.2478

238

https://doi.org/10.4018/978-1-7998-7979-4.ch034
https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=2970&context=nss_journal
https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=2970&context=nss_journal
https://doi.org/10.61356/2993-7159.1276
https://doi.org/10.1515/jisys-2016-0088
https://doi.org/10.1515/jisys-2016-0088
https://doi.org/10.3390/math6070121
https://doi.org/10.3390/math6070121
https://doi.org/10.22105/jfea.2025.514314.1858
https://doi.org/10.1007/s12652-022-03772-6
https://doi.org/10.1007/s12652-022-03772-6
https://doi.org/10.61356/j.pl.2025.2484
https://doi.org/10.61356/j.oia.2025.2478
https://doi.org/10.61356/j.oia.2025.2478

	Preliminaries
	Fuzzy Set and Neutrosophic Set

	Result of This Paper
	Mathematical Model of Risk Management
	Mathematical Framework for Fuzzy Risk Management
	Mathematical Framework for Neutrosophic Risk Management

	Conclusion and Future Work

