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The study explores the utilization of Hamacher aggregation operators (HAOs) 
in inscription selection for medical health projects. We employ interval-
valued complex T-spherical fuzzy (IVCTSF) information to address the 
inherent uncertainties in healthcare data. In this paper, we develop the 
multiple-attribute decision-making (MADM) problems with IVCTSF set 
information. A few HAOs built on IVCTSF sets are presented in this work. We 
practice the Hamacher t-norm (HTNM) and Hamacher t-conorm (HTCNM) to 
characterize certain operational Hamacher operational rules within the 
context of the IVCTSF sets. We utilize averaging and geometric operations to 
develop a family of operators for aggregating IVCTSF information, namely 
IVCTSF Hamacher weighted averaging (IVCTFHWA), IVCTSF Hamacher order 
weighted averaging (IVCTSFHOWA), IVCTSF Hamacher hybrid weighted 
averaging (IVCTSFHHWA), IVCTSF Hamacher weighted geometric 
(IVCTSFHWG), IVCTSF Hamacher ordered weighted geometric 
(IVCTSFHOWG), and IVCTSF Hamacher hybrid weighted geometric 
(IVCTSFHHWG) operators.  Several noteworthy properties of the developed 
operators are examined. Besides, an approach to the MADM algorithm is 
formulated using the proposed operators and is applied to a detailed case 
study. The case study measures the effectiveness of the proposed algorithm, 
analyzes the effect of variable parameters on the decision-making procedure, 
and ensures the stability of ranking results. A comparative analysis is 
conducted against existing studies to underscore the significance and 
advantages. Our findings demonstrate the effectiveness of this approach in 
improving decision-making for healthcare management in complex scenarios. 
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1. Introduction 
 

The inherent uncertainty and inaccuracy of data in information analysis have long posed major 
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challenges for mathematicians. To mitigate these issues, numerous theoretical frameworks have 
been proposed, each aiming to enhance the precision and reliability of mathematical modeling and 
data interpretation. Various theoretical frameworks have been developed to address the frequent 
errors and inconsistencies encountered in data analysis. These theories are characterized by distinct 
properties, each offering specific advantages and limitations. Among them, Zadeh’s fuzzy set (FS) 
theory has established itself as a foundational approach. This framework effectively addresses key 
real-world applications, such as navigation, classification, pattern recognition, and numerous 
domains in computing and engineering. Zadeh introduced the concept of FS to manage uncertainty 
by representing membership degrees (MDs) as values within the range [0, 1]. This mathematical 
representation enabled researchers to quantify uncertainty in a structured and formalized manner. 
However, a fundamental limitation of Zadeh’s original formulation was its lack of consideration for a 
non-membership degree (NMD), which restricted its applicability in certain contexts.  

Atanassov [1] enhanced Zadeh's impression of an FS and obtained an intuitionistic fuzzy set (IFS) 
by presenting MD and NMD to address this need. These ideas demonstrated how ambiguous some 
limitations can be. This idea set a restriction on the aggregate worth of MD and NMD, preventing it 
from exceeding 𝟣. Yager [2] enhanced this claim by introducing the idea of the Pythagorean fuzzy set 
(PyFS), which increases the potential for combining the advantages of MD and NMD. Yager [3] also 
made another outstanding commitment by inventing the q-rung orthopair fuzzy set (q-ROFS) model. 
Together, the ideas of uncertainty, PyFS, and q-ROFS tackle practical issues like uncertainty and 
vulnerability.  

The largest flaw, however, was their inability to articulate the specifics of approval and rejection 
because they had degrees. Because human judgment is not confined to a clear-cut "yes" or "no", it 
might contain a range of replies. Human evaluations also contain a certain amount of tolerance and 
resistance. Cuong [4] made an effort to account for this peculiarity. According to him, a significant 
amount of data is lost when ambiguity is not managed, including its summed-up forms of MD and 
NMD, promotion, and RD. Cuong proposed the idea of a picture fuzzy set (PFS) as a triad that includes 
MD, NMD, Promotion, and RD with the constraint that the sum of their values should not exceed 𝟣. 
To diminish this constraint, Mahmood et al. [5] lengthened this notion toward a boundary equal by 
exemplifying strange spherical fuzzy set (SFS) and T-spherical fuzzy set (TSFS) sets. The information 
from the confused plane is not included in the summarized structures outlined above, according to 
Ramot et al. [6]. By using the baffling numbers rather than the real numbers, Ramot et al. [6] 
considered including the perplexing plane FS and offered the prospect for complex FS (CFS). 
 
1.1. Literature Review 
 

The CFS's notion had pushed the FS to its breaking point, but the CFS could not possibly be 
concerned about the numerous perplexing numbers in the unit circle. To provide leaders with a 
massive platform to get rid of the greater data when compared to the CFS, Alkouri et al. [7] built the 
possibility of bewildering uncertainties (CIFS). To promote CIFSs, Alkouri and Salleh [7] employed the 
MD and NMD as a baffling sum after the unit circle on a confusing plane. The MD and NMD of the 
numbers in the CIFS, however, were represented as a sum of the genuine and fake parts in a unit 
circle. The issue developed, nevertheless, when leaders selected levels of fantastical and real 
elements whose aggregate was greater than a unit circle. Ullah et al. [8] enclosed more data than the 
CIFSs in their presentation of the complicated PyFSs (CPyFSs) by increasing the number of degrees to 
the number of their squares.  
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The most advanced strategy involves choosing the best option from a minor quantity of explicit 
options created on a sum of frequently at odds with each other criteria. When the aforementioned 
systems were enhanced, the MADM technique became very popular since the outcomes it generates 
depend on the most powerful aggregation operators (AOs). Khan et al. [9] highlighted the AOs on 
uncertainty and used them in MADM. Using the PyFSs, Liu and Wang [10] created AOs that were later 
incorporated into MADM. As part of their contribution to the MADM, Wang et al. [11] created AOs 
for the q-ROFS premise. Garg [12] implemented many AOs in MADM in light of PFSs. Zhou et al. [13] 
provided AOs for MADM using the TSFS data. There is some outstanding effort on the AOs in [14-16].  

A few important functional regulations are required for the creation of these AOs. These 
regulations rely on a few three-sided criteria to achieve adaptation [17]. Wu et al. [18] created Dombi 
AOs by applying the Dombi t-norm (TNM) and t-conorm (TCNM) in the MADM while taking 
uncertainties into account. Akram et al. [19] framed the Dombi AOs and applied them to PyFS to 
overcome the MADM issue. Wang and Liu [20] used the Einstein TNM and TCNM to create the AOs 
for the climate of uncertainty, which were subsequently implemented in MADM. Riaz et al. [21] 
established AOs and provided a beneficial application in the production network of the board by 
incorporating Einstein TNM and TCNM for the atmosphere of q-ROFSs. Fahmi et al. [22] utilized 
Einstein TNM and TCNM to enhance the AOs for the submission of MADM. Senapati et al. [23] 
suggested the Aczel-Alsina AOs in the context of IFSs. Yang et al. [24] a few long-standing PyFS AOs 
were promoted in preparation for TCNM and the impending TNM. Several AOs that rely on different 
additional TNMs and TCNMs are mentioned in [25-26].  

The AOs that have a significant influence on the request in MADM are developed using the TNMs 
and TCNMs that were previously stated. Between these TNMs and TCNMs, the HTNM and HTCNM 
stand out and have been extensively used by professionals in nearly all of the FS hypothesis models 
that have been created [27]. Garg [28] formalized AOs and applied HTNM and HTCNM to uncertainty. 
Wu and Wei [29] also used the HTNM and HTCNM in the formalization of the AOs for the PyFS. For 
the q-ROFS, Darko and Liang [30] provided a few AOs that used HTNM and HTCNM. To evaluate a 
project, Ullah et al. [31] presented AOs for the TSFS based on HTNM and HTCNM. For IFSs, the 
condensed AOs were provided in [32]. PyFS AOs were developed and used by Wu and Wei [33] with 
the direction of HTNM and HTCNM. Ali et al. [34] fostered some AOs under the environment of 
complex interval-valued PyFS.  

It has long been acknowledged that the CTSFS will cover the significant loss of data when we 
remove data from any real distinctiveness to perform navigation. In particular, it is incredibly possible 
to extract the most likely facts whenever the human perspective is taken into account. So, employing 
CTSFS in MADM provides a wonderful opportunity to engage with the outcomes in the MADM. We 
further noted the importance of HTNM and HTCNM in the work by Klement and Navara [35] who 
analyzed various TN and TCN kinds, attained a range of ranks, and found the critical ramifications for 
HTNM and HTCNM.  
 
1.2. Contribution 

 
The key contributions of this study are described as follows: 
 

i. This paper introduces novel Hamacher operational laws based on IVCTSFs and applies 
these operations to develop the IVCTSFHWA, IVCTSFHOWA, IVCTSFHHWA, IVCTSFHWG, 
IVCTSFHOWG, and IVCTSFHHWG operators. 
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ii. This research examines several key mathematical properties of the proposed operators 
to validate their effectiveness and theoretical robustness. 

iii. The study demonstrates the application of the proposed methods in MAGDM problems 
using the proposed operators. 

iv. A case study is presented to illustrate the practical benefits of the proposed approach, 
focusing on the evaluation and government development of a medical college. 

v. To authenticate the efficiency and robustness of the proposed MADM scheme, extensive 
sensitivity analysis and a comparative evaluation against existing approaches are 
conducted, highlighting its superiority and resilience. 

 
This article is planned as follows: Section 2 offers several vital notions related to IVCTSFS, score 

function, and Hamacher operations. In Section 3, we created the Hamacher operational laws for 
IVCTSFSs. In Section 4, we studied a series of averaging operators for IVCTSFSs, including the 
IVCTSFHWA, IVCTSFHOWA, and IVCTSFHHWA operators along with their fundamental properties. In 
Section 5, we constructed the IVCTSFHWG, IVCTSFOWG, and IVCTSFHHWG operators as well as 
explored their features. Section 6 presents the development of a MADM methodology utilizing the 
proposed operators. To demonstrate the practical applicability of the developed framework, an 
illustrative case study is conducted. In Section 7, a comparative and sensitivity analysis is performed 
to validate the effectiveness and robustness of the proposed approach. Finally, Section 8 outlines the 
key conclusions and suggests directions for future research. 

 
2. Preliminaries 
 

In this segment, we characterized fundamental ideas connected to IVCTSFS, HTNM, and HTCNM. 
Definition 𝟣: [36] The IVCTSFS over a fixed set 𝑋 can be defined as:  

 

𝑰 = (

[𝕞𝓪(𝖃). 𝒆𝟐𝝅𝖎𝝑𝓪(𝖃), 𝕦𝓪(𝖃). 𝒆𝟐𝝅𝖎𝜷𝓪(𝖃)],

[𝕞𝖎(𝖃). 𝒆𝟐𝝅𝖎𝝑𝖎(𝖃), 𝕦𝖎(𝖃). 𝒆𝟐𝝅𝖎𝜷𝖎(𝖃)],

[𝕞𝒏(𝖃). 𝒆𝟐𝝅𝖎𝝑𝒏(𝖃), 𝕦𝒏(𝖃). 𝒆𝟐𝝅𝖎𝜷𝒏(𝖃)]

) ; 𝖃 ∈ 𝑿, (1) 

 

with 0 ≤ 𝕞𝒶
ℚ(𝔛) + 𝕞𝔦

ℚ(𝔛) + 𝕞𝑛
ℚ(𝔛) ≤ 𝟣 and 0 ≤ 𝜗𝒶

ℚ(𝔛) + 𝜗𝔦
ℚ(𝔛) + 𝜗𝑛

ℚ(𝔛) ≤ 𝟣 for ℚ ∈  ℤ+. The 

RD can be defined as:  
 
𝝅(𝖃) = 𝕞𝒉(𝖃). 𝒆𝟐𝝅𝖎𝝑𝒉(𝖃) , (2) 

 

where 𝕞ℎ(𝔛) = √𝟣 − (𝕞𝒶
ℚ(𝔛) + 𝕞𝔦

ℚ(𝔛)  + 𝕞𝑛
ℚ(𝔛))

ℚ

 and 𝜗ℎ(𝔛) = √𝟣 − (𝜗𝒶
ℚ(𝔛) + 𝜗𝔦

ℚ(𝔛)  + 𝜗𝑛
ℚ(𝔛))

ℚ

. 

For simplicity, the triplet  
 
([𝕞𝓪(𝖃). 𝒆𝟐𝝅𝖎𝝑𝓪(𝖃), 𝕦𝓪(𝖃). 𝒆𝟐𝝅𝖎𝜷𝓪(𝖃)], [𝕞𝖎(𝖃). 𝒆𝟐𝝅𝖎𝝑𝖎(𝖃), 𝕦𝖎(𝖃). 𝒆𝟐𝝅𝖎𝜷𝖎(𝖃)], [𝕞𝒏(𝖃). 𝒆𝟐𝝅𝖎𝝑𝒏(𝖃), 𝕦𝒏(𝖃). 𝒆𝟐𝝅𝖎𝜷𝒏(𝖃)]), (3) 

 
is labeled as an IVCTSFN. 

Definition 2: [36] For an IVCTSF 𝐼, the score value 𝕊(𝐼) ∈ [−𝟣, 𝟣] is articulated as:  
 

𝕊(𝑰) =
(( 𝕞𝓪 + 𝝑𝓪 + 𝕦𝓪 + 𝜷𝓪) (− 𝕞𝖎 + 𝝑𝖎 + 𝕦𝖎 + 𝜷𝖎) + (𝕞𝒏 + 𝝑𝒏 + 𝕦𝒏 + 𝜷𝒏))

𝟔
. (4) 
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For two IVCTSFNs 𝐼1 and 𝐼2, we can describe the following ordered relations as follows: 
 

i. When 𝕊(𝐼1) < 𝕊(𝐼2), then 𝐼1 < 𝐼2. 
ii. When 𝕊(𝐼1) > 𝕊(𝐼2), then 𝐼1 > 𝐼2. 

iii. When 𝕊(𝐼1) = 𝕊(𝐼2), then 𝐼1 = 𝐼2. 
 
Definition 3: [27] The HTCNM and HTNM functions can be defined as: 

 

𝑻𝒉𝒏(𝕞,𝓪) =
𝕞.𝓪

ℕ+(𝟭−ℕ)(𝕞+𝓪−𝕞𝓪)
 , ℕ > 𝟎, (𝕞, 𝓪) ∈ [𝟎, 𝟭]𝟐,  (5) 

 

𝑻𝒉𝒄𝒏(𝕞,𝓪) =
𝕞+𝓪−𝕞𝓪−(𝟭−ℕ)𝕞𝓪

𝟭−(𝟭−ℕ)𝕞𝓪
 , ℕ > 𝟎, (𝕞,𝓪) ∈ [𝟎, 𝟭]𝟐.  (6) 

 
3. Hamacher Operational Rules for IVCTSFNs 

 
In this section, we shall provide the concepts of Hamacher operational laws, including sum, 

product, scalar multiplication, and scaler power which can be applied to aggregate IVCTSFNs. We 
have also looked at and examined several fundamental properties. 

Definition 4: Let A and B be two IVCTSFNs and 𝐵, ℕ > 0 be any real numbers. Then, the Hamacher 
operations for IVCTSFNs are described as: 
 

𝑨 ⊕ 𝑩 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

√
𝕞𝓪𝑨

ℚ (𝖃)+𝕞𝓪𝑩

ℚ (𝖃)−𝕞𝓪𝑨

ℚ (𝖃).𝕞𝓪𝑩

ℚ (𝖃)−(𝟭−ℕ).𝕞𝓪𝑨

ℚ (𝖃).𝕞𝓪𝑩

ℚ (𝖃)

𝟭−((𝟭−ℕ).𝕞𝓪𝑨

ℚ
(𝖃).𝕞𝓪𝑩

ℚ
(𝖃))

ℚ

. 𝒆

𝟐𝝅𝖎 √
𝝑𝓪𝑨

ℚ (𝖃)+𝝑𝓪𝑩

ℚ (𝖃)−𝝑𝓪𝑨

ℚ (𝖃).𝝑𝓪𝑩

ℚ (𝖃)−(𝟭−ℕ).𝝑𝓪𝑨

ℚ (𝖃).𝝑𝓪𝑩

ℚ (𝖃)

𝟭−((𝟭−ℕ).𝝑𝓪𝑨
ℚ (𝖃).𝝑𝓪𝑩

ℚ (𝖃))

ℚ

,

√
𝕦𝓪𝑨

ℚ (𝖃)+𝕦𝓪𝑩

ℚ (𝖃)−𝕦𝓪𝑨

ℚ (𝖃).𝕦𝓪𝑩

ℚ (𝖃)−(𝟭−ℕ).𝕦𝓪𝑨

ℚ (𝖃).𝕦𝓪𝑩

ℚ (𝖃)

𝟭−((𝟭−ℕ).𝕦𝓪𝑨

ℚ
(𝖃).𝕦𝓪𝑩

ℚ
(𝖃))

ℚ

. 𝒆

𝟐𝝅𝖎 √
𝜷𝓪𝑨

ℚ (𝖃)+𝜷𝓪𝑩

ℚ (𝖃)−𝜷𝓪𝑨

ℚ (𝖃).𝜷𝓪𝑩

ℚ (𝖃)−(𝟭−ℕ).𝜷𝓪𝑨

ℚ (𝖃).𝜷𝓪𝑩

ℚ (𝖃)

𝟭−((𝟭−ℕ).𝜷𝓪𝑨
ℚ (𝖃).𝜷𝓪𝑩

ℚ (𝖃))

ℚ

]
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 

𝕞𝖎𝑨
(𝖃).𝕞𝖎𝑩

(𝖃)

√ℕ+(𝟭−ℕ)(𝕞𝖎𝑨

ℚ (𝖃)+𝕞𝖎𝑩

ℚ (𝖃)−𝕞𝖎𝑨

ℚ (𝖃).𝕞𝖎𝑩

ℚ (𝖃))
ℚ

. 𝒆

𝟐𝝅𝖎
𝝑𝖎𝑨

(𝖃).𝝑𝖎𝑩
(𝖃)

√ℕ+(𝟭−ℕ)(𝝑
𝖎𝑨

ℚ (𝖃)+𝝑
𝖎𝑩

ℚ (𝖃)−𝝑
𝖎𝑨

ℚ (𝖃).𝝑
𝖎𝑩

ℚ (𝖃))
ℚ

,

𝕦𝖎𝑨
(𝖃).𝕦𝖎𝑩

(𝖃)

√ℕ+(𝟭−ℕ)(𝕦𝖎𝑨

ℚ (𝖃)+𝕦𝖎𝑩

ℚ (𝖃)−𝕦𝖎𝑨

ℚ (𝖃).𝕦𝖎𝑩

ℚ (𝖃))
ℚ

. 𝒆

𝟐𝝅𝖎
𝜷𝖎𝑨

(𝖃).𝜷𝖎𝑩
(𝖃)

√ℕ+(𝟭−ℕ)(𝜷
𝖎𝑨

ℚ (𝖃)+𝜷
𝖎𝑩

ℚ (𝖃)−𝜷
𝖎𝑨

ℚ (𝖃).𝜷
𝖎𝑩

ℚ (𝖃))
ℚ

]
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 

𝕞𝒏𝑨(𝖃).𝕞𝒏𝑩(𝖃)

√ℕ+(𝟭−ℕ)(𝕞𝒏𝑨

ℚ (𝖃)+𝕞𝒏𝑩

ℚ (𝖃)−𝕞𝒏𝑨

ℚ (𝖃).𝕞𝒏𝑩

ℚ (𝖃))
ℚ . 𝒆

𝟐𝝅𝖎
𝝑𝒏𝑨(𝖃).𝝑𝒏𝑩(𝖃)

√ℕ+(𝟭−ℕ)(𝝑𝒏𝑨
ℚ (𝖃)+𝝑𝒏𝑩

ℚ (𝖃)−𝝑𝒏𝑨
ℚ (𝖃).𝝑𝒏𝑩

ℚ (𝖃))
ℚ

,

𝕦𝒏𝑨(𝖃).𝕦𝒏𝑩(𝖃)

√ℕ+(𝟭−ℕ)(𝕦𝒏𝑨

ℚ (𝖃)+𝕦𝒏𝑩

ℚ (𝖃)−𝕦𝒏𝑨

ℚ (𝖃).𝕦𝒏𝑩

ℚ (𝖃))
ℚ . 𝒆

𝟐𝝅𝖎
𝜷𝒏𝑨(𝖃).𝜷𝒏𝑩(𝖃)

√ℕ+(𝟭−ℕ)(𝜷𝒏𝑨
ℚ (𝖃)+𝜷𝒏𝑩

ℚ (𝖃)−𝜷𝒏𝑨
ℚ (𝖃).𝜷𝒏𝑩

ℚ (𝖃))
ℚ

]
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,  (7) 
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𝑨 ⊗ 𝑩 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝕞𝓪𝑨
(𝖃).𝕞𝓪𝑩

(𝖃)

√ℕ+(𝟭−ℕ)(𝕞𝓪𝑨

ℚ (𝖃)+𝕞𝓪𝑩

ℚ (𝖃)−𝕞𝓪𝑨

ℚ (𝖃).𝕞𝓪𝑩

ℚ (𝖃))
ℚ . 𝒆

𝟐𝝅𝖎
𝝑𝓪𝑨(𝖃).𝝑𝓪𝑩(𝖃)

√ℕ+(𝟭−ℕ)(𝝑𝓪𝑨

ℚ
(𝖃)+𝝑𝓪𝑩

ℚ
(𝖃)−𝝑𝓪𝑨

ℚ
(𝖃).𝝑𝓪𝑩

ℚ
(𝖃))

ℚ

,

𝕦𝓪𝑨
(𝖃).𝕦𝓪𝑩

(𝖃)

√ℕ+(𝟭−ℕ)(𝕦𝓪𝑨

ℚ
(𝖃)+𝕦𝓪𝑩

ℚ
(𝖃)−𝕦𝓪𝑨

ℚ
(𝖃).𝕦𝓪𝑩

ℚ
(𝖃))

ℚ . 𝒆

𝟐𝝅𝖎
𝜷𝓪𝑨(𝖃).𝜷𝓪𝑩(𝖃)

√ℕ+(𝟭−ℕ)(𝜷𝓪𝑨

ℚ
(𝖃)+𝜷𝓪𝑩

ℚ
(𝖃)−𝜷𝓪𝑨

ℚ
(𝖃).𝜷𝓪𝑩

ℚ
(𝖃))

ℚ

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 

√
𝕞𝖎𝑨

ℚ (𝖃)+𝕞𝖎𝑩

ℚ (𝖃)−𝕞𝖎𝑨

ℚ (𝖃).𝕞𝖎𝑩

ℚ (𝖃)−(𝟭−ℕ).𝕞𝖎𝑨

ℚ (𝖃).𝕞𝖎𝑩

ℚ (𝖃)

𝟭−((𝟭−ℕ).𝕞𝖎𝑨

ℚ (𝖃).𝕞𝖎𝑩

ℚ (𝖃))

ℚ
. 𝒆

𝟐𝝅𝖎 √

𝝑
𝖎𝑨

ℚ
(𝖃)+𝝑

𝖎𝑩

ℚ
(𝖃)−𝝑

𝖎𝑨

ℚ
(𝖃).𝝑

𝖎𝑩

ℚ
(𝖃)−(𝟭−ℕ).𝝑

𝖎𝑨

ℚ
(𝖃).𝝑

𝖎𝑩

ℚ
(𝖃𝟐)

𝟭−((𝟭−ℕ).𝝑
𝖎𝑨

ℚ (𝖃).𝝑
𝖎𝑩

ℚ (𝖃))

ℚ

,

√
𝕦𝖎𝑨

ℚ (𝖃)+𝕦𝖎𝑩

ℚ (𝖃)−𝕦𝖎𝑨

ℚ (𝖃).𝕦𝖎𝑩

ℚ (𝖃)−(𝟭−ℕ).𝕦𝖎𝑨

ℚ (𝖃).𝕦𝖎𝑩

ℚ (𝖃)

𝟭−((𝟭−ℕ).𝕦𝖎𝑨

ℚ (𝖃).𝕦𝖎𝑩

ℚ (𝖃))

ℚ
. 𝒆

𝟐𝝅𝖎 √

𝜷
𝖎𝑨

ℚ
(𝖃)+𝜷

𝖎𝑩

ℚ
(𝖃)−𝜷

𝖎𝑨

ℚ
(𝖃).𝜷

𝖎𝑩

ℚ
(𝖃)−(𝟭−ℕ).𝜷

𝖎𝑨

ℚ
(𝖃).𝜷

𝖎𝑩

ℚ
(𝖃𝟐)

𝟭−((𝟭−ℕ).𝜷
𝖎𝑨

ℚ
(𝖃).𝜷

𝖎𝑩

ℚ
(𝖃))

ℚ

]
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 

√
𝕞𝒏𝑨

ℚ (𝖃)+𝕞𝒏𝑩

ℚ (𝖃)−𝕞𝒏𝑨

ℚ (𝖃).𝕞𝒏𝑩

ℚ (𝖃)−(𝟭−ℕ).𝕞𝒏𝑨

ℚ (𝖃).𝕞𝒏𝑩

ℚ (𝖃)

𝟭−((𝟭−ℕ).𝕞𝒏𝑨

ℚ (𝖃).𝕞𝒏𝑩

ℚ (𝖃))

ℚ

. 𝒆

𝟐𝝅𝖎 √
𝝑𝒏𝑨
ℚ (𝖃)+𝝑𝒏𝑩

ℚ (𝖃)−𝝑𝒏𝑨
ℚ (𝖃).𝝑𝒏𝑩

ℚ (𝖃)−(𝟭−ℕ).𝝑𝒏𝑨
ℚ (𝖃).𝝑𝒏𝑩

ℚ (𝖃)

𝟭−((𝟭−ℕ).𝝑𝒏𝑨
ℚ (𝖃).𝝑𝒏𝑩

ℚ (𝖃))

ℚ

,

√
𝕦𝒏𝑨

ℚ (𝖃)+𝕦𝒏𝑩

ℚ (𝖃)−𝕦𝒏𝑨

ℚ (𝖃).𝕦𝒏𝑩

ℚ (𝖃)−(𝟭−ℕ).𝕦𝒏𝑨

ℚ (𝖃).𝕦𝒏𝑩

ℚ (𝖃)

𝟭−((𝟭−ℕ).𝕦𝒏𝑨

ℚ (𝖃).𝕦𝒏𝑩

ℚ (𝖃))

ℚ

. 𝒆

𝟐𝝅𝖎 √
𝜷𝒏𝑨
ℚ (𝖃)+𝜷𝒏𝑩

ℚ (𝖃)−𝜷𝒏𝑨
ℚ (𝖃).𝜷𝒏𝑩

ℚ (𝖃)−(𝟭−ℕ).𝜷𝒏𝑨
ℚ (𝖃).𝜷𝒏𝑩

ℚ (𝖃)

𝟭−((𝟭−ℕ).𝜷𝒏𝑨
ℚ (𝖃).𝜷𝒏𝑩

ℚ (𝖃))

ℚ

]
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,  (8) 

 

𝑩𝑨 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

√
(𝟭+(ℕ−𝟭)𝕞𝓪

ℚ
𝑨
(𝖃))

𝑩
−(𝟭−𝕞𝓪

ℚ
𝑨
(𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝕞𝓪
ℚ

𝑨
(𝖃))

𝑩
+(ℕ−𝟭)(𝟭−𝕞𝓪

ℚ
𝑨
(𝖃))

𝑩

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝝑𝓪

ℚ
𝑨
(𝖃))

𝑩

−(𝟭−𝝑𝓪
ℚ

𝑨
(𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝝑𝓪
ℚ

𝑨
(𝖃))

𝑩

+(ℕ−𝟭)(𝟭−𝝑𝓪
ℚ

𝑨
(𝖃))

𝑩

ℚ

,

√
(𝟭+(ℕ−𝟭)𝕦𝓪

ℚ
𝑨
(𝖃))

𝑩
−(𝟭−𝕦𝓪

ℚ
𝑨
(𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝕦𝓪
ℚ

𝑨
(𝖃))

𝑩
+(ℕ−𝟭)(𝟭−𝕦𝓪

ℚ
𝑨
(𝖃))

𝑩

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝜷𝓪

ℚ
𝑨
(𝖃))

𝑩

−(𝟭−𝜷𝓪
ℚ

𝑨
(𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝜷𝓪
ℚ

𝑨
(𝖃))

𝑩

+(ℕ−𝟭)(𝟭−𝜷𝓪
ℚ

𝑨
(𝖃))

𝑩

ℚ

]
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 
 

√ℕ
ℚ

(𝕞𝖎𝑨
(𝖃))

𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝕞𝖎𝑨

ℚ (𝖃)))

𝑩

+(ℕ−𝟭)(𝕞𝖎𝑨

ℚ (𝖃))

𝑩ℚ

. 𝒆

𝟐𝝅𝖎
√ℕ

ℚ
(𝝑𝖎𝑨

(𝖃))
𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝝑
𝖎𝑨

ℚ (𝖃)))

𝑩

+(ℕ−𝟭)(𝝑
𝖎𝑨

ℚ (𝖃))

𝑩ℚ

,

√ℕ
ℚ

(𝕦𝖎𝑨
(𝖃))

𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝕦𝖎𝑨

ℚ (𝖃)))

𝑩

+(ℕ−𝟭)(𝕦𝖎𝑨

ℚ (𝖃))

𝑩ℚ

. 𝒆

𝟐𝝅𝖎
√ℕ

ℚ
(𝜷𝖎𝑨

(𝖃))
𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝜷
𝖎𝑨

ℚ (𝖃)))

𝑩

+(ℕ−𝟭)(𝜷
𝖎𝑨

ℚ (𝖃))

𝑩ℚ

]
 
 
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 

√ℕ
ℚ

(𝕞𝒏𝑨(𝖃))
𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝕞𝒏𝑨

ℚ (𝖃)))

𝑩

+(ℕ−𝟭)(𝕞𝒏𝑨

ℚ (𝖃))
𝑩ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ

ℚ
(𝝑𝒏𝑨(𝖃))

𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝝑𝒏
ℚ

𝑨
(𝖃)))

𝑩

+(ℕ−𝟭)(𝝑𝒏
ℚ

𝑨
(𝖃))

𝑩ℚ

,

√ℕ
ℚ

(𝕦𝒏𝑨(𝖃))
𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝕦𝒏𝑨

ℚ (𝖃)))

𝑩

+(ℕ−𝟭)(𝕦𝒏𝑨

ℚ (𝖃))
𝑩ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ

ℚ
(𝜷𝒏𝑨(𝖃))

𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝜷𝒏
ℚ

𝑨
(𝖃)))

𝑩

+(ℕ−𝟭)(𝜷𝒏
ℚ

𝑨
(𝖃))

𝑩ℚ

]
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,  (9) 
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𝑨𝑩 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

√ℕ
ℚ

(𝕞𝓪𝑨
(𝖃))

𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝕞𝓪𝑨

ℚ
(𝖃)))

𝑩

+(ℕ−𝟭)(𝕞𝓪𝑨

ℚ
(𝖃))

𝑩ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ

ℚ
(𝝑𝓪𝑨(𝖃))

𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝝑𝓪
ℚ

𝑨
(𝖃)))

𝑩

+(ℕ−𝟭)(𝝑𝓪𝑨
ℚ

(𝖃))

𝑩ℚ

,

√ℕ
ℚ

(𝕦𝓪𝑨(𝖃))
𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝕦𝓪𝑨

ℚ (𝖃)))

𝑩

+(ℕ−𝟭)(𝕦𝓪𝑨

ℚ (𝖃))
𝑩ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ

ℚ
(𝜷𝓪𝑨(𝖃))

𝑩

√(𝟭+(ℕ−𝟭)(𝟭−𝜷𝓪
ℚ

𝑨
(𝖃)))

𝑩

+(ℕ−𝟭)(𝜷𝓪𝑨

ℚ
(𝖃))

𝑩ℚ

]
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 

√
(𝟭+(ℕ−𝟭)𝕞𝖎𝑨

ℚ (𝖃))

𝑩

−(𝟭−𝕞𝖎𝑨

ℚ (𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝕞𝖎𝑨

ℚ (𝖃))

𝑩

+(ℕ−𝟭)(𝟭−𝕞𝖎𝑨

ℚ (𝖃))

𝑩

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝝑

𝖎𝑨

ℚ (𝖃))

𝑩

−(𝟭−𝝑
𝖎𝑨

ℚ (𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝝑
𝖎𝑨

ℚ (𝖃))

𝑩

+(ℕ−𝟭)(𝟭−𝝑
𝖎𝑨

ℚ (𝖃))

𝑩

ℚ

,

√
(𝟭+(ℕ−𝟭)𝕦𝖎𝑨

ℚ (𝖃))

𝑩

−(𝟭−𝕦𝖎𝑨

ℚ (𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝕦𝖎𝑨

ℚ (𝖃))

𝑩

+(ℕ−𝟭)(𝟭−𝕦𝖎𝑨

ℚ (𝖃))

𝑩

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝜷

𝖎𝑨

ℚ (𝖃))

𝑩

−(𝟭−𝜷
𝖎𝑨

ℚ (𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝜷
𝖎𝑨

ℚ (𝖃))

𝑩

+(ℕ−𝟭)(𝟭−𝜷
𝖎𝑨

ℚ (𝖃))

𝑩

ℚ

]
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 

√
(𝟭+(ℕ−𝟭)𝕞𝒏𝑨

ℚ
(𝖃))

𝑩
−(𝟭−𝕞𝒏𝑨

ℚ
(𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝕞𝒏𝑨

ℚ (𝖃))
𝑩
+(ℕ−𝟭)(𝟭−𝕞𝒏𝑨

ℚ (𝖃))
𝑩

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝝑𝒏

ℚ
𝑨
(𝖃))

𝑩

−(𝟭−𝝑𝒏
ℚ

𝑨
(𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝝑𝒏
ℚ

𝑨
(𝖃))

𝑩

+(ℕ−𝟭)(𝟭−𝝑𝒏
ℚ

𝑨
(𝖃))

𝑩

ℚ

,

√
(𝟭+(ℕ−𝟭)𝕦𝒏𝑨

ℚ (𝖃))
𝑩
−(𝟭−𝕦𝒏𝑨

ℚ (𝖃))
𝑩

(𝟭+(ℕ−𝟭)𝕦𝒏𝑨

ℚ (𝖃))
𝑩
+(ℕ−𝟭)(𝟭−𝕦𝒏𝑨

ℚ (𝖃))
𝑩

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝜷𝒏

ℚ
𝑨
(𝖃))

𝑩

−(𝟭−𝜷𝒏
ℚ

𝑨
(𝖃))

𝑩

(𝟭+(ℕ−𝟭)𝜷𝒏
ℚ

𝑨
(𝖃))

𝑩

+(ℕ−𝟭)(𝟭−𝜷𝒏
ℚ

𝑨
(𝖃))

𝑩

ℚ

]
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  (10) 

 
4. Averaging Aggregation Operators of IVCTSFNs 

 
In this part, using Hamacher operational laws, we construct a series of averaging AOs for 

IVCTSFNs, namely IVCTSFHWA, IVCTSFHOWA, and IVCTSFHHWA operators. We also highlight the 
desirable characteristics and of these AOs with concrete illustrations. Throughout, this script 𝛤𝛯 =
(𝛤𝟣 , 𝛤2 , … , 𝛤𝕞 )𝑇will denote the weight vector, such that  𝛤𝛯 > 0 and  ∑ 𝛤𝛯 = 𝟣𝕞

𝟣  for  𝛯 =
{𝟣, 2, 3…𝕞}. 

Definition 5: Let 𝒯𝛯  be the collection of IVCTSFNs. Then, the IVCTSFHWA operator is mapping  
𝑇𝕞  ⟶ 𝑇 defined as: 
 
𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑨 (𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) = ∑ 𝜞𝜩𝓣𝜩

𝕞
𝜩=𝟭 .  (11) 

 
Theorem 1: Let 𝑇𝛯 be a group of IVCTSFNs. Then, the aggregated outcome using IVCTSFHWA is 

still an IVCTSFN, which is postulated as: 
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𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑨(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞𝓪

ℚ
𝜩
)
𝜞𝜩

 − ∏ (𝟭−𝕞𝓪
ℚ

𝜩
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞𝓪
ℚ

𝜩
)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞𝓪

ℚ
𝜩
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝝑𝓪

ℚ
𝜩
)
𝜞𝜩

 − ∏ (𝟭−𝝑𝓪
ℚ

𝜩
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑𝓪
ℚ

𝜩
)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝝑𝓪

ℚ
𝜩
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦𝓪

ℚ
𝜩
)
𝜞𝜩

 − ∏ (𝟭−𝕦𝓪
ℚ

𝜩
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦𝓪
ℚ

𝜩
)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦𝓪

ℚ
𝜩
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝜷𝓪

ℚ
𝜩
)
𝜞𝜩

 − ∏ (𝟭−𝜷𝓪
ℚ

𝜩
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷𝓪
ℚ

𝜩
)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝜷𝓪

ℚ
𝜩
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

 ∏ (𝕞𝖎𝜩)Ɩ
𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞𝖎𝜩

ℚ
))

𝜞𝜩 

+(ℕ−𝟭)∏ (𝕞𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
 ∏ (𝝑𝖎𝜩

)Ɩ
𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝝑
𝖎𝜩

ℚ
))

𝜞𝜩 
+(ℕ−𝟭) ∏ (𝝑

𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

 ∏ (𝕦𝖎𝜩)Ɩ
𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦𝖎𝜩

ℚ
))

𝜞𝜩 

+(ℕ−𝟭)∏ (𝕦𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
 ∏ (𝜷𝖎𝜩

)Ɩ
𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝜷
𝖎𝜩

ℚ
))

𝜞𝜩 
+(ℕ−𝟭) ∏ (𝜷

𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

 ∏ (𝕞𝒏𝜩)Ɩ
𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞𝒏𝜩

ℚ
))

𝜞𝜩 
+(ℕ−𝟭)∏ (𝕞𝒏𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
 ∏ (𝝑𝒏𝜩)Ɩ

𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝝑𝒏𝜩
ℚ

))

𝜞𝜩 
+(ℕ−𝟭) ∏ (𝝑𝒏𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

 ∏ (𝕦𝒏𝜩)Ɩ
𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦𝒏𝜩

ℚ
))

𝜞𝜩 
+(ℕ−𝟭)∏ (𝕦𝒏𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
 ∏ (𝜷𝒏𝜩)Ɩ

𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝜷𝒏𝜩
ℚ

))

𝜞𝜩 
+(ℕ−𝟭) ∏ (𝜷𝒏𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
(12) 

 
Proof of Theorem 𝟣 is provided Appendix-1.  
Theorem 2: For the IVCTSFHWA operator, the following features hold true:  
 

i. Idempotency − If for all  𝑇𝛯  = 𝑇,  then: 
 
𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑨(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) = 𝓣.  (13) 

 

ii. Boundedness − Assume 𝑇− and 𝑇+. Then:  
 
𝓣− ≤ 𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑨(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) ≤ 𝓣+.  (14) 

 

iii. Monotonicity − Let 𝒯𝛯 and 𝑃𝛯 be two collections of IVCTSFNs, such that 𝒯𝛯 ≤ 𝑃𝛯 , ∀𝛯. 
Then: 

 
 𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑨(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) ≤  𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑨(𝑷𝟭, 𝑷𝟐, 𝑷𝟑, …𝑷𝕞).  (15) 

 
Proof of Theorem 2 is straightforward and therefore omitted. 
The IVCTSFHWA operator first assigns the weights to IVCTSFNs and then determines their 

weighted aggregated value. Now, we articulate another operator termed as IVCTSFHOWA operator, 
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which first organizes the IVCTSFNs in descending order and then allocates weights to their ordered 
positions. This operator is then implemented to aggregate the ordered weighted IVCTSFNs. 

Definition 6: Let 𝑇𝛯  be a group of IVCTSFNs. We can define the IVCTSFHOWA operator as:  
 
 𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑶𝑾𝑨(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) = ∑ 𝜞𝜩

Ɩ
𝜩=𝟭 𝓣𝝈(𝜩),  (16) 

 
where (𝜎(𝟣), 𝜎(2),… , 𝜎(𝕞)) is a permutation such that 𝒯𝜎(𝛯−𝟣) ≥ 𝒯𝜎(𝛯), ∀𝛯.  

Theorem 3: The aggregated outcomes of the collection of IVCTSFNs 𝑇𝛯 by the IVCTSFHOWA 
operator is again an IVCTSFN and is postulated as: 
 
𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑶𝑾𝑨(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) = ∑ 𝜞𝜩

Ɩ
𝜩=𝟭 𝓣𝝈(𝜩)  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞𝓪𝝈(𝜩)

ℚ
)
𝜞𝜩

−∏ (𝟭−𝕞𝓪𝝈(𝜩)

ℚ
)
𝜞𝜩𝕞

𝜩=𝟭
𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞𝓪𝝈(𝜩)

ℚ
)
𝜞𝜩𝕞

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞𝓪𝝈(𝜩)

ℚ
)
𝜞𝜩𝕞

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √

∏ (𝟭+(ℕ−𝟭)𝝑𝓪𝝈(𝜩)
ℚ

)

𝜞𝜩
−∏ (𝟭−𝝑𝓪𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑𝓪𝝈(𝜩)
ℚ

)

𝜞𝜩
𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝝑𝓪𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦𝓪𝝈(𝜩)

ℚ
)
𝜞𝜩

−∏ (𝟭−𝕦𝓪𝝈(𝜩)

ℚ
)
𝜞𝜩𝕞

𝜩=𝟭
𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦𝓪𝝈(𝜩)

ℚ
)
𝜞𝜩𝕞

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦𝓪𝝈(𝜩)

ℚ
)
𝜞𝜩𝕞

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √

∏ (𝟭+(ℕ−𝟭)𝜷𝓪𝝈(𝜩)
ℚ

)

𝜞𝜩
−∏ (𝟭−𝜷𝓪𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷𝓪𝝈(𝜩)
ℚ

)

𝜞𝜩
𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝜷𝓪𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 

 ,

  

[
 
 
 
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞𝖎𝝈(𝜩))
𝜞𝜩𝕞

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞𝖎𝝈(𝜩)

ℚ
))

𝜞𝜩 

+( ℕ−𝟭 )∏ (𝕞𝖎𝝈(𝜩)

ℚ
)
𝜞𝜩𝕞

𝜩=𝟭
𝕞
𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝝑𝖎𝝈(𝜩))

𝜞𝜩𝕞
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝝑
𝖎𝝈(𝜩)

ℚ
))

𝜞𝜩

+( ℕ−𝟭 )∏ (𝝑
𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦𝖎𝝈(𝜩))
𝜞𝜩𝕞

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦𝖎𝝈(𝜩)

ℚ
))

𝜞𝜩 

+( ℕ−𝟭 )∏ (𝕦𝖎𝝈(𝜩)

ℚ
)
𝜞𝜩𝕞

𝜩=𝟭
𝕞
𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝜷𝖎𝝈(𝜩))

𝜞𝜩𝕞
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝜷
𝖎𝝈(𝜩)

ℚ
))

𝜞𝜩

+( ℕ−𝟭 )∏ (𝜷
𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞𝒏𝝈(𝜩))
𝜞𝜩𝕞

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞𝒏𝝈(𝜩)

ℚ
))

𝜞𝜩 

+( ℕ−𝟭 )∏ (𝕞𝒏𝝈(𝜩)

ℚ
)
𝜞𝜩𝕞

𝜩=𝟭
𝕞
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝝑𝒏𝝈(𝜩))

𝜞𝜩𝕞
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝝑𝒏𝝈(𝜩)
ℚ

))

𝜞𝜩

+( ℕ−𝟭 )∏ (𝝑𝒏𝝈(𝜩)
ℚ

)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦𝒏𝝈(𝜩))
𝜞𝜩𝕞

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦𝒏𝝈(𝜩)

ℚ
))

𝜞𝜩 

+( ℕ−𝟭 )∏ (𝕦𝒏𝝈(𝜩)

ℚ
)
𝜞𝜩𝕞

𝜩=𝟭
𝕞
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝜷𝒏𝝈(𝜩))

𝜞𝜩𝕞
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝜷𝒏𝝈(𝜩)
ℚ

))

𝜞𝜩
+( ℕ−𝟭 )∏ (𝜷𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 
 

  

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
(17) 

 
Proof of Theorem 3 is analogous to proof of Theorem 1. 
The IVCTSFHOWA operator possesses the axioms of idempotency, monotonicity, and 

boundedness. The IVCTSFHWA operator weighs only IVCTSFNs, while the IVCTSFHOWA operator 
weighs just the ordered positions of IVCTSFNs. Consequently, weights express different aspects of 
the IVCTSFHWA and LDFHOWA operators. However, one of the operators, as well as the other 
operators, considers just one of them. To circumvent this shortcoming, we interpret the IVCTSFHHA 
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operator as a generalization of both IVCTSFHWA and IVCTSFHOWA operators. This operator weighs 
all of the given IVCTSFNs and their appropriate order positions. 

Definition 7: Suppose 𝑇𝛯 be a collection of IVCTSFNs. Then, the IVCTSFHHA operator is 
characterized as: 
 
𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑯𝑨(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) = ∑ 𝜞𝜩

𝕞
𝜩=𝟭 𝓣̇𝝈(𝜩),  (18) 

 

where 𝒯̇𝜎(𝛯) is the 𝛯𝑡ℎ greatest element of the IVCTSF arguments 𝒯̇𝛯(𝒯̇𝛯 = (𝑘𝑤𝛯)𝑇) and 

(𝜎(𝟣), 𝜎(2),… , 𝜎(𝕞)) is a permutation such that 𝒯𝜎(𝛯−𝟣) ≥ 𝒯𝜎(𝛯), ∀𝛯. Here, 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝕞) is 

a weight vector of IVCTSFNs 𝑇𝛯 with 𝑤𝛯 > 0 and 𝑤1 + 𝑤2 + …+ 𝑤𝕞 = 1. 
Theorem 4: Let 𝑇𝛯  be a gathering of IVCTSFNs. Then, the IVCTSFHHA operator is defined as:  

 
𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑯𝑨(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞)  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞̇̇𝓪𝛔(𝚵)

ℚ
)
𝚪𝚵

−∏ (𝟭−𝕞̇̇𝓪𝛔(𝚵)

ℚ
)
𝚪𝚵𝕞

𝚵=𝟭
𝕞
𝚵=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞̇𝓪𝛔(𝚵)

ℚ
)
𝚪𝚵𝕞

𝚵=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞̇𝓪𝛔(𝚵)

ℚ
)
𝚪𝚵𝕞

𝚵=𝟭

ℚ

. 𝐞

𝟐𝛑𝖎 √

∏ (𝟭+(ℕ−𝟭)𝛝̇𝓪𝛔(𝚵)
ℚ

)

𝚪𝚵
−∏ (𝟭−𝛝̇𝓪𝛔(𝚵)

ℚ
)

𝚪𝚵
𝕞
𝚵=𝟭

𝕞
𝚵=𝟭

∏ (𝟭+(ℕ−𝟭)𝛝̇𝓪𝛔(𝚵)
ℚ

)

𝚪𝚵
𝕞
𝚵=𝟭 +(ℕ−𝟭)∏ (𝟭−𝛝̇𝓪𝛔(𝚵)

ℚ
)

𝚪𝚵
𝕞
𝚵=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦̇𝓪𝛔(𝚵)

ℚ
)
𝚪𝚵

−∏ (𝟭−𝕦̇𝓪𝛔(𝚵)

ℚ
)
𝚪𝚵𝕞

𝚵=𝟭
𝕞
𝚵=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦̇𝓪𝛔(𝚵)

ℚ
)
𝚪𝚵𝕞

𝚵=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦̇𝓪𝛔(𝚵)

ℚ
)
𝚪𝚵𝕞

𝚵=𝟭

ℚ

. 𝐞

𝟐𝛑𝖎 √

∏ (𝟭+(ℕ−𝟭)𝛃̇𝓪𝛔(𝚵)
ℚ

)

𝚪𝚵
−∏ (𝟭−𝛃̇𝓪𝛔(𝚵)

ℚ
)

𝚪𝚵
𝕞
𝚵=𝟭

𝕞
𝚵=𝟭

∏ (𝟭+(ℕ−𝟭)𝛃̇𝓪𝛔(𝚵)
ℚ

)

𝚪𝚵
𝕞
𝚵=𝟭 +(ℕ−𝟭)∏ (𝟭−𝛃̇𝓪𝛔(𝚵)

ℚ
)

𝚪𝚵
𝕞
𝚵=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞̇𝖎𝛔(𝚵))
𝚪𝚵𝕞

𝚵=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞̇𝖎𝛔(𝚵)

ℚ
))

𝚪𝚵 

+( ℕ−𝟭 )∏ (𝕞̇𝖎𝛔(𝚵)

ℚ
)
𝚪𝚵𝕞

𝚵=𝟭
𝕞
𝚵=𝟭

ℚ

. 𝐞

𝟐𝛑𝖎
√ℕ 

ℚ
∏ (𝛝̇𝖎𝛔(𝚵))

𝚪𝚵𝕞
𝚵=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝛝̇
𝖎𝛔(𝚵)

ℚ
))

𝚪𝚵

+( ℕ−𝟭 )∏ (𝛝̇
𝖎𝛔(𝚵)

ℚ
)

𝚪𝚵
𝕞
𝚵=𝟭

𝕞
𝚵=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦̇𝖎𝛔(𝚵))
𝚪𝚵𝕞

𝚵=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦̇𝖎𝛔(𝚵)

ℚ
))

𝚪𝚵 

+( ℕ−𝟭 )∏ (𝕦̇𝖎𝛔(𝚵)

ℚ
)
𝚪𝚵𝕞

𝚵=𝟭
𝕞
𝚵=𝟭

ℚ

. 𝐞

𝟐𝛑𝖎
√ℕ 

ℚ
∏ (𝛃̇𝖎𝛔(𝚵))

𝚪𝚵𝕞
𝚵=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝛃̇
𝖎𝛔(𝚵)

ℚ
))

𝚪𝚵

+( ℕ−𝟭 )∏ (𝛃̇
𝖎𝛔(𝚵)

ℚ
)

𝚪𝚵
𝕞
𝚵=𝟭

𝕞
𝚵=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞̇𝐧𝛔(𝚵))
𝚪𝚵𝕞

𝚵=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞̇𝐧𝛔(𝚵)
ℚ

))
𝚪𝚵 

+( ℕ−𝟭 )∏ (𝕞̇𝐧𝛔(𝚵)
ℚ

)
𝚪𝚵𝕞

𝚵=𝟭
𝕞
𝚵=𝟭

ℚ
. 𝐞

𝟐𝛑𝖎
√ℕ 

ℚ
∏ (𝛝̇𝐧𝛔(𝚵))

𝚪𝚵𝕞
𝚵=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝛝̇𝐧𝛔(𝚵)
ℚ

))

𝚪𝚵
+( ℕ−𝟭 )∏ (𝛝̇𝐧𝛔(𝚵)

ℚ
)

𝚪𝚵
𝕞
𝚵=𝟭

𝕞
𝚵=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦̇𝐧𝛔(𝚵))
𝚪𝚵𝕞

𝚵=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦̇𝐧𝛔(𝚵)
ℚ

))
𝚪𝚵 

+( ℕ−𝟭 )∏ (𝕦̇𝐧𝛔(𝚵)
ℚ

)
𝚪𝚵𝕞

𝚵=𝟭
𝕞
𝚵=𝟭

ℚ
. 𝐞

𝟐𝛑𝖎
√ℕ 

ℚ
∏ (𝛃̇𝐧𝛔(𝚵))

𝚪𝚵𝕞
𝚵=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝛃̇𝐧𝛔(𝚵)
ℚ

))

𝚪𝚵

+( ℕ−𝟭 )∏ (𝛃̇𝐧𝛔(𝚵)
ℚ

)

𝚪𝚵
𝕞
𝚵=𝟭

𝕞
𝚵=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 
 

   

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  
(19) 

 
Proof of Theorem 4 is straightforward. 
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5. Geometric Aggregation Operators of IVCTSFNs 
 
In this section, using Hamacher operational laws, we establish a class of geometric AOs for 

IVCTSFNs, namely the IVCTSFHWG, IVCTSFHOWG, and IVCTSFHHWG operators and studied some of 
their basic features. 

Definition 8: For a group of IVCTSFNs 𝑇𝛯 the IVCTSFHWG operator is portrayed as: 
 

𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑮(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) = ∑ 𝓣𝜩
𝜞𝜩Ɩ

𝜩=𝟭 .  (20) 

 
Theorem 5: Consider 𝑇𝛯 be IVCTSFNs. The IVCTSFHWG operator is described as: 

 
𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑮(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞)  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

 ∏ (𝕞𝓪𝜩)Ɩ
𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞𝓪𝜩

ℚ
))

𝜞𝜩 
+(ℕ−𝟭)∏ (𝕞𝓪𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
 ∏ (𝝑𝓪𝜩)Ɩ

𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝝑𝓪𝜩))
𝜞𝜩 

+(ℕ−𝟭)∏ (𝝑𝓪𝜩)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

 ∏ (𝕦𝓪𝜩)Ɩ
𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦𝓪𝜩

ℚ
))

𝜞𝜩 
+(ℕ−𝟭)∏ (𝕦𝓪𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
 ∏ (𝜷𝓪𝜩)Ɩ

𝜩=𝟭  

𝜞𝜩

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝜷𝓪𝜩))
𝜞𝜩 

+(ℕ−𝟭)∏ (𝜷𝓪𝜩)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞𝖎𝜩

ℚ
)
𝜞𝜩

 − ∏ (𝟭−𝕞𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞𝖎𝜩

ℚ
)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝝑

𝖎𝜩

ℚ
)
𝜞𝜩

 − ∏ (𝟭−𝝑
𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑
𝖎𝜩

ℚ
)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝝑

𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦𝖎𝜩

ℚ
)
𝜞𝜩

 − ∏ (𝟭−𝕦𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦𝖎𝜩

ℚ
)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝜷

𝖎𝜩

ℚ
)
𝜞𝜩

 − ∏ (𝟭−𝜷
𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷
𝖎𝜩

ℚ
)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝜷

𝖎𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞𝒏𝜩

ℚ
)
𝜞𝜩

 − ∏ (𝟭−𝕞𝒏𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞𝒏𝜩

ℚ
)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞𝒏𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝝑𝒏𝜩

ℚ
)
𝜞𝜩

 − ∏ (𝟭−𝝑𝒏𝜩
ℚ

)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑𝒏𝜩
ℚ

)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝝑𝒏𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦𝒏𝜩

ℚ
)
𝜞𝜩

 − ∏ (𝟭−𝕦𝒏𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦𝒏𝜩

ℚ
)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦𝒏𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝜷𝒏𝜩

ℚ
)
𝜞𝜩

 − ∏ (𝟭−𝜷𝒏𝜩
ℚ

)
𝜞𝜩Ɩ

𝜩=𝟭
Ɩ
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷𝒏𝜩
ℚ

)
𝜞𝜩

 Ɩ
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝜷𝒏𝜩

ℚ
)
𝜞𝜩Ɩ

𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  
(21) 

 
Proof of Theorem 5 is analogous to proof of Theorem 1. 
Definition 9: Consider 𝑇𝛯  be a collection of IVCTSFNs. Then, the IVCTSFHOWG operator is 

postulated as: 
 

𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑶𝑾𝑮(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) = ∑ 𝓣𝝈(𝜩)
𝜞𝜩 ,Ɩ

𝜩=𝟭   (22) 

 
where (𝜎(𝟣), 𝜎(2),… , 𝜎(𝕞)) is a permutation such that  𝒯𝜎(𝛯−𝟣) ≥ 𝒯𝜎(𝛯), ∀𝛯. 

Theorem 6: Consider 𝑇𝛯 be a family of IVCTSFNs. Then, the IVCTSFHOWG operator is given as: 
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𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑶𝑾𝝊(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, … 𝓣𝕞) = ∑ 𝓣𝝈(𝜩)
𝜞𝜩Ɩ

𝜩=𝟭   

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞𝓪𝝈(𝜩))
𝜞𝜩𝕞

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞𝓪𝒔𝝈(𝜩)

ℚ
))

𝜞𝜩 

+( ℕ−𝟭 )∏ (𝕞𝓪𝝈(𝜩)

ℚ
)
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝝑𝓪𝝈(𝜩))

𝜞𝜩𝕞
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝝑𝓪𝝈(𝜩)

ℚ
))

𝜞𝜩
+( ℕ−𝟭 )∏ (𝝑𝓪𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦𝓪𝝈(𝜩))
𝜞𝜩𝕞

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦𝓪𝝈(𝜩)

ℚ
))

𝜞𝜩 

+( ℕ−𝟭 )∏ (𝕦𝓪𝝈(𝜩)

ℚ
)
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝜷𝓪𝝈(𝜩))

𝜞𝜩𝕞
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝜷𝓪𝝈(𝜩)

ℚ
))

𝜞𝜩

+( ℕ−𝟭 ) ∏ (𝜷𝓪𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞𝖎𝝈(𝜩)

ℚ
)
𝜞𝜩

−∏ (𝟭−𝕞𝖎𝝈(𝜩)

ℚ
)
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞𝖎𝝈(𝜩)

ℚ
)
𝜞𝜩

𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞𝖎𝝈(𝜩)

ℚ
)
𝜞𝜩

𝕞
𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √

∏ (𝟭+(ℕ−𝟭)𝝑
𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
−∏ (𝟭−𝝑

𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑
𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝝑

𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦𝖎𝝈(𝜩)

ℚ
)
𝜞𝜩

−∏ (𝟭−𝕦𝖎𝝈(𝜩)

ℚ
)
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦𝖎𝝈(𝜩)

ℚ
)
𝜞𝜩

𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦𝖎𝝈(𝜩)

ℚ
)
𝜞𝜩

𝕞
𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √

∏ (𝟭+(ℕ−𝟭)𝜷
𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
−∏ (𝟭−𝜷

𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷
𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝜷

𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 

,

  

[
 
 
 
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

−∏ (𝟭−𝕞𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝝑𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
−∏ (𝟭−𝝑𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑𝒏𝝈(𝜩)
ℚ

)

𝜞𝜩
𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝝑𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

−∏ (𝟭−𝕦𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦𝒏𝝈(𝜩)

ℚ
)
𝜞𝜩

𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦𝒏𝝈(𝜩)

ℚ
)
𝜞𝜩

𝕞
𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝜷𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
−∏ (𝟭−𝜷𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷𝒏𝝈(𝜩)
ℚ

)

𝜞𝜩
𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝜷𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 

 

  )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  
(23) 

  
Definition 𝟣0: Suppose that 𝑇𝛯  be a collection of IVCTSFNs. Then, IVCTSFHHG is postulated as: 

 

𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑯𝝊(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝕞) = ∑ 𝓣̇𝝈(𝜩)
𝜞𝜩 .Ɩ

𝜩=𝟭   (24) 

 
Theorem 7: Consider 𝑇𝛯 a group of IVCTSFNs. Then, IVCTSFHHG is characterized as: 

 
𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑯𝝊(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, … 𝓣𝕞)  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞̇𝓪𝝈(𝜩))
𝜞𝜩𝕞

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞̇𝓪𝝈(𝜩)

ℚ ))

𝜞𝜩

+( ℕ−𝟭 )∏ (𝕞̇𝓪𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝝑̇𝓪𝝈(𝜩))

𝜞𝜩𝕞
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝝑̇𝓪𝝈(𝜩)

ℚ
))

𝜞𝜩
+( ℕ−𝟭 )∏ (𝝑̇𝓪𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦̇𝓪𝝈(𝜩))
𝜞𝜩𝕞

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦̇𝓪𝝈(𝜩)

ℚ ))

𝜞𝜩

+( ℕ−𝟭 )∏ (𝕦̇𝓪𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝜷̇𝓪𝝈(𝜩))

𝜞𝜩𝕞
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝜷̇𝓪𝝈(𝜩)

ℚ
))

𝜞𝜩
+( ℕ−𝟭 )∏ (𝜷̇𝓪𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞̇̇𝖎𝝈(𝜩)

ℚ )
𝜞𝜩

−∏ (𝟭−𝕞̇̇𝖎𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞̇̇𝖎𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞̇̇𝖎𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √

∏ (𝟭+(ℕ−𝟭)𝝑̇
𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
−∏ (𝟭−𝝑̇

𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑̇
𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝝑̇

𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦̇𝖎𝝈(𝜩)

ℚ )
𝜞𝜩

−∏ (𝟭−𝕦̇𝖎𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦̇𝖎𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦̇𝖎𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √

∏ (𝟭+(ℕ−𝟭)𝜷̇
𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
−∏ (𝟭−𝜷̇

𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷̇
𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝜷̇

𝖎𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞̇𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

−∏ (𝟭−𝕞̇𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞̇𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞̇𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝝑̇𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
−∏ (𝟭−𝝑̇𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑̇𝒏𝝈(𝜩)
ℚ

)

𝜞𝜩
𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝝑̇𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦̇𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

−∏ (𝟭−𝕦̇𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦̇𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦̇𝒏𝝈(𝜩)

ℚ )
𝜞𝜩

𝕞
𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝜷̇𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
−∏ (𝟭−𝜷̇𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

𝕞
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷̇𝒏𝝈(𝜩)
ℚ

)

𝜞𝜩
𝕞
𝜩=𝟭 +(ℕ−𝟭) ∏ (𝟭−𝜷̇𝒏𝝈(𝜩)

ℚ
)

𝜞𝜩
𝕞
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
(25) 
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6. Application of MADM 
 

In this segment, we implemented the proposed operators to construct a MADM scheme under 
the environment of the IVCTSFS setting. Let 𝐵 = {𝐵𝟣, 𝐵2, . . . , 𝐵𝑘} be an assemblage of alternatives 
and 𝜐 = {𝜐𝟣, 𝜐2, .  .  . , 𝜐𝛯} be the set attributes. Assume that 𝛤𝛯 = (𝛤𝟣 , 𝛤2 , … , 𝛤𝕞 )𝑇be the associated 
weight vector of attributes, such that  𝛤𝛯 > 0 and ∑ 𝛤𝛯 = 𝟣𝕞

𝟣 . 

Presume that 𝐷𝑘×𝛯 = (𝑇)𝑘×𝛯 = (

[𝕞𝒶(𝔛). 𝑒2𝜋𝔦𝜗𝒶(𝔛), 𝕦𝒶(𝔛). 𝑒2𝜋𝔦𝛽𝒶(𝔛)],

 [𝕞𝔦(𝔛). 𝑒2𝜋𝔦𝜗𝔦(𝔛), 𝕦𝔦(𝔛). 𝑒2𝜋𝔦𝛽𝔦(𝔛)],

 [𝕞𝑛(𝔛). 𝑒2𝜋𝔦𝜗𝑛(𝔛), 𝕦𝑛(𝔛). 𝑒2𝜋𝔦𝛽𝑛(𝔛)]

)

𝑘×𝛯

be the decision 

matrix of IVCTSFNs provided by an expert to evaluate the given alternatives under given attributes. 
Considering these observations, the systematic process of designed MADM scheme is outlined as 
follows:  

Step 𝟣 − Structure the given information in the decision matrix form of IVCTSFNs. 

Step 2 − Evaluate the normalized matrix  𝑁̂ = (𝑇̂)
𝑘×𝛯

 according to the following transformation: 

 

𝑻̂ = {
𝑻 for benifit attribute
𝑻𝒄 for cost attribute

.  (26) 

 

Step 3 − Utilize the proposed AOs to aggregate data in the form of IVCTSFNs. 

Step 4 − Compute the score values of each alternative using the following formula: 
 

𝕊(𝑻) =
(( 𝕞𝓪+𝝑𝓪+𝕦𝓪+𝜷𝓪) (− 𝕞𝖎+𝝑𝖎+𝕦𝖎+𝜷𝖎)−(𝕞𝒏+𝝑𝒏+𝕦𝒏+𝜷𝒏))

𝟔
.  (27) 

 

Step 5 − Rank the alternatives based on their score values. The greater the score value, the better 
the alternative is. 

 
6.1. Numerical Example 

 
This example helps us apply the proposed way to deal with the MADM issue. The government 

made a medical college project in the city and selected a suitable place for this project. Medical 
colleges are essential institutions that play a multifaceted role in training healthcare professionals, 
advancing medical research, providing healthcare services, and contributing to the overall health and 
well-being of communities. They are foundational elements of healthcare systems, supporting the 
delivery of quality care and the pursuit of medical knowledge. The benefits of medical colleges are: 

 

i. Training healthcare professionals − To educate and train doctors, nurses, and allied health 
professionals, ensuring a skilled workforce for healthcare delivery. 

ii. Advancing medical research − Researching to improve medical knowledge, treatments, 
and patient outcomes. 

iii. Addressing healthcare disparities − Alleviating healthcare disparities by producing 
professionals attuned to diverse community needs. 

iv. Providing specialized medical services − Offering specialized medical care and treatments 
through associated hospitals and clinics. 
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v. Meeting community healthcare needs − Medical colleges can engage in international 
collaborations, sharing expertise, research findings, and best practices with the global 
healthcare community.  

 
In essence, medical colleges are critical for training, research, and healthcare delivery, ensuring a 

healthy and skilled workforce for the benefit of society. Ultimately, the suitability of an area for a 
medical college is a complex decision that takes into account the unique characteristics and needs of 
the region, to improve healthcare services and education for the benefit of the local population. The 
government wants to select a city to make medical college due to some basic’s cause. This city's 
population is larger than other cities.  The government chooses four cities for this project. The branch 
of wellbeing needs to choose one city 𝐵𝛯 (𝟣 ≤ 𝛯 ≤ 4) in view of certain criteria (𝜐𝟣), (𝜐2), (𝜐3), and 
(𝜐4). The weights are 𝛤𝛯 = (0. 𝟣, 0.2, 0.3, 0.4)𝑇.  

Step 𝟣 − The data provided by an expert is organized in the from of IVCTFNs (Table 𝟣). 
 
Table 1 
Decision matrix 
 𝒗𝟏 𝒗𝟐 

𝑩𝟏 (
[𝟎. 𝟑, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟑],

[𝟎. 𝟐, 𝟎. 𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟑,𝟎.𝟒], [𝟎. 𝟐, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟒]
) (

[𝟎. 𝟑, 𝟎. 𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟑],

[𝟎. 𝟑𝟐, 𝟎. 𝟑𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟐𝟐,𝟎.𝟐𝟓], [𝟎. 𝟭, 𝟎. 𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟑]
) 

𝑩𝟐 (
[𝟎. 𝟐, 𝟎. 𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟭,𝟎.𝟒],

[𝟎. 𝟭, 𝟎. 𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟒,𝟎.𝟓], [𝟎. 𝟑, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟑]
) (

[𝟎. 𝟑, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟑,𝟎.𝟒],

[𝟎. 𝟐𝟐, 𝟎. 𝟑𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟑𝟐,𝟎.𝟒𝟔], [𝟎. 𝟐, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟑,𝟎.𝟒]
) 

𝑩𝟑 (
[𝟎. 𝟭, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟒],

[𝟎. 𝟑, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟭,𝟎.𝟑], [𝟎. 𝟐, 𝟎. 𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟭,𝟎.𝟐]
) (

[𝟎. 𝟐, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟒,𝟎.𝟓],

[𝟎. 𝟑𝟒, 𝟎. 𝟑𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟐𝟓,𝟎.𝟒𝟒], [𝟎. 𝟐, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟒]
) 

𝑩𝟒 (
[𝟎. 𝟐, 𝟎. 𝟔]𝒆𝟐𝝅𝖎[𝟎.𝟑,𝟎.𝟓],

[𝟎. 𝟒, 𝟎. 𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟒], [𝟎. 𝟑, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟑,𝟎.𝟒]
) (

[𝟎. 𝟭, 𝟎. 𝟐]𝒆𝟐𝝅𝖎[𝟎.𝟑,𝟎.𝟒],

[𝟎. 𝟐𝟭, 𝟎. 𝟐𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟭𝟕,𝟎.𝟒𝟓], [𝟎. 𝟑, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟭,𝟎.𝟐]
) 

 𝒗𝟑 𝒗𝟒 

𝑩𝟏 (
[𝟎. 𝟭, 𝟎. 𝟐]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟑],

[𝟎. 𝟐𝟐, 𝟎. 𝟑𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟐𝟒,𝟎.𝟐𝟖], [𝟎. 𝟐, 𝟎. 𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟑,𝟎.𝟒]
) (

[𝟎. 𝟭, 𝟎. 𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟑],

[𝟎. 𝟐𝟒, 𝟎. 𝟐𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟐𝟐,𝟎.𝟐𝟓], [𝟎. 𝟑, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟭,𝟎.𝟒]
) 

𝑩𝟐 (
[𝟎. 𝟑, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟑,𝟎.𝟒],

[𝟎. 𝟐𝟒, 𝟎. 𝟑𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟑𝟒,𝟎.𝟑𝟓], [𝟎. 𝟑, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟑]
) (

[𝟎. 𝟐, 𝟎. 𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟑,𝟎.𝟒],

[𝟎. 𝟐𝟐, 𝟎. 𝟑𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟑𝟐,𝟎.𝟑𝟓], [𝟎. 𝟑, 𝟎. 𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟓]
) 

𝑩𝟑 (
[𝟎. 𝟒, 𝟎. 𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟭,𝟎.𝟐],

[𝟎. 𝟭𝟕, 𝟎. 𝟑𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟐𝟐,𝟎.𝟐𝟓], [𝟎. 𝟭, 𝟎. 𝟐]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟒]
) (

[𝟎. 𝟑, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟒,𝟎.𝟓],

[𝟎. 𝟐𝟭, 𝟎. 𝟐𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟐𝟑,𝟎𝟑.𝟒], [𝟎. 𝟐, 𝟎. 𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟒]
) 

𝑩𝟒 (
[𝟎. 𝟐, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟭,𝟎.𝟑],

[𝟎. 𝟭𝟗, 𝟎. 𝟐𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟐𝟭,𝟎.𝟐𝟕], [𝟎. 𝟐, 𝟎. 𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟭,𝟎.𝟐]
) (

[𝟎. 𝟒, 𝟎. 𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟒,𝟎.𝟓],

[𝟎. 𝟭𝟔, 𝟎. 𝟐𝟐]𝒆𝟐𝝅𝖎[𝟎.𝟐𝟐,𝟎.𝟑𝟑], [𝟎. 𝟐, 𝟎. 𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟑,𝟎.𝟒]
) 

 

Step 2 − There is no need for normalization since there is no cost attribute.  

Step 3 − The aggregated values (fixing ℚ = 4, ℕ = 3) via the IVCTSFHWA and IVCTSFHWG 
operators are displayed in Table 2. 

 
Table 2 
Aggregated values 
 IVCTSFHWA  IVCTSFHWG  

𝑩𝟏 (
[𝟎. 𝟎𝟖𝟗𝟑, 𝟎. 𝟭𝟐𝟕𝟗]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟖𝟗𝟓,𝟎.𝟭𝟭𝟖𝟔],

[𝟎. 𝟎𝟑𝟭𝟒, 𝟎. 𝟎𝟑𝟗]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟑𝟎𝟭,𝟎.𝟎𝟑𝟓𝟓], [𝟎. 𝟎𝟐𝟔𝟭, 𝟎. 𝟎𝟒𝟓𝟔]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟐𝟭𝟖,𝟎.𝟎𝟒𝟗𝟕]
) (

[𝟎. 𝟎𝟭𝟕𝟖, 𝟎. 𝟎𝟒𝟎𝟐]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟐𝟓𝟓,𝟎.𝟎𝟑𝟗𝟭],

[𝟎. 𝟭𝟎𝟑𝟔, 𝟎. 𝟭𝟐𝟐𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟭𝟎𝟭𝟔,𝟎.𝟭𝟭𝟑𝟖], [𝟎. 𝟎𝟖𝟕𝟭, 𝟎. 𝟭𝟑𝟎𝟖]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟗𝟐𝟭,𝟎.𝟭𝟑𝟖𝟑]
) 

𝑩𝟐 (
[𝟎. 𝟭𝟎𝟓𝟗, 𝟎. 𝟭𝟑𝟑𝟎]𝒆𝟐𝝅𝖎[𝟎.𝟭𝟎𝟓𝟐,𝟎.𝟭𝟒𝟒𝟒𝟓],

[𝟎. 𝟎𝟐𝟔𝟔, 𝟎. 𝟎𝟒𝟒𝟭]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟒𝟑𝟗,𝟎.𝟎𝟓𝟭𝟭], [𝟎. 𝟎𝟑𝟓𝟗, 𝟎. 𝟎𝟓𝟕𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟐𝟕𝟖,𝟎.𝟎𝟓𝟭𝟭]
) (

[𝟎. 𝟎𝟑𝟭𝟔, 𝟎. 𝟎𝟒𝟓𝟔]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟑𝟒𝟕,𝟎.𝟎𝟓𝟐𝟕],

[𝟎. 𝟎𝟖𝟕𝟔, 𝟎. 𝟭𝟐𝟕𝟔]𝒆𝟐𝝅𝖎[𝟎.𝟭𝟐𝟖𝟕,𝟎.𝟭𝟒𝟑𝟕], [𝟎. 𝟭𝟭𝟎𝟖, 𝟎. 𝟭𝟓𝟐𝟔]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟗𝟕𝟔,𝟎.𝟭𝟒𝟭𝟗]
) 

𝑩𝟑 (
[𝟎. 𝟭𝟎𝟓𝟔𝟭, 𝟎. 𝟭𝟓𝟭𝟔]𝒆𝟐𝝅𝖎[𝟎.𝟭𝟭𝟐𝟕,𝟎.𝟭𝟒𝟒𝟒𝟒𝟓],

[𝟎. 𝟎𝟐𝟗𝟭, 𝟎. 𝟎𝟒𝟎𝟗]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟐𝟕𝟭,𝟎.𝟎𝟒𝟐𝟒], [𝟎. 𝟭, 𝟎. 𝟐]𝒆𝟐𝝅𝖎[𝟎.𝟐,𝟎.𝟒]
) (

[𝟎. 𝟎𝟑𝟒𝟗, 𝟎. 𝟎𝟓𝟔𝟐]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟑𝟐𝟭,𝟎.𝟎𝟒𝟗𝟓],

[𝟎. 𝟭𝟎𝟒𝟒, 𝟎. 𝟭𝟐𝟔𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟖𝟗𝟐,𝟎.𝟭𝟐𝟕𝟎], [𝟎. 𝟎𝟖𝟭𝟐, 𝟎. 𝟭𝟭𝟕𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟖𝟭𝟎,𝟎.𝟭𝟑𝟓𝟖]
) 

𝑩𝟒 (
[𝟎. 𝟎𝟗𝟔𝟎, 𝟎. 𝟭𝟒𝟔𝟑]𝒆𝟐𝝅𝖎[𝟎.𝟭𝟭𝟭𝟐,𝟎.𝟭𝟒𝟖𝟗],

[𝟎. 𝟎𝟐𝟓𝟐, 𝟎. 𝟎𝟑𝟑𝟓]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟐𝟔𝟎,𝟎.𝟎𝟒𝟒𝟔], [𝟎. 𝟎𝟐𝟎𝟔, 𝟎. 𝟎𝟒𝟖𝟒]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟐𝟐𝟭,𝟎.𝟎𝟑𝟕]
) (

[𝟎. 𝟎𝟐𝟗𝟓, 𝟎. 𝟎𝟓𝟑𝟎]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟑𝟭𝟔,𝟎.𝟎𝟓𝟒𝟒],

[𝟎. 𝟎𝟗𝟕𝟭, 𝟎. 𝟭𝟭𝟑𝟎𝟭]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟖𝟗𝟎,𝟎.𝟭𝟑𝟐𝟒], [𝟎. 𝟭𝟎𝟑𝟐, 𝟎. 𝟭𝟑𝟕𝟭]𝒆𝟐𝝅𝖎[𝟎.𝟎𝟖𝟒𝟔,𝟎.𝟭𝟭𝟓𝟓]
) 

 
 



Management Science Advances 

Volume 2, Issue 1 (2025) 69-90 

83 
 

 

Step 4 − The score values are calculated in Table 3. 

 
Table 3 
Score values 
 IVCTSFHWA  IVCTSFHWG  
𝕊(𝑩𝟏) 𝟎. 𝟎𝟓𝟎𝟗 −𝟎. 𝟑𝟖𝟎𝟕 
𝕊(𝑩𝟐) 𝟎. 𝟎𝟒𝟐𝟑 −𝟎. 𝟑𝟖𝟑𝟗 
𝕊(𝑩𝟑) 𝟎. 𝟎𝟖𝟭𝟖 −𝟎. 𝟑𝟒𝟖𝟗 
𝕊(𝑩𝟒) 𝟎. 𝟎𝟖𝟎𝟔 −𝟎. 𝟑𝟓𝟭𝟓 

 

Step 5 − Based on the score values, the outcomes through the IVCTSFHWA and IVCTSFHWG 
operators are obtained as 𝐵3 ≻ 𝐵4 ≻ 𝐵𝟣 ≻ 𝐵2 and 𝐵3 ≻ 𝐵4 ≻ 𝐵𝟣 ≻ 𝐵2, respectively.  
 
7. Discussion and Comparison 
 

The present section conducts a comparative sensitivity analysis and comparison of the designed 
AOs to confirm the validity and supremacy of our recommended technique and operators. 

 
7.1. Sensitivity Analysis 

 
Depending on the decision-maker choices, multiple values might be allocated to the Hamacher 

parameter 𝛤𝛯. To scrutinize the influence of the parameter 𝛤𝛯 on the recommended MADM strategy, 
we accomplish an analysis using numerous values of 𝛤𝛯. The overall score values and the ranking 
results utilizing the IVCTSFHWA and IVCTSFHWG operators related to these values of 𝛤𝛯 are 
summarized in Table 4 and Table 5, respectively. 

 
Table 4 
Impact of 𝛤𝛯 under the IVCTSFHWA operator 

Inputs of 𝜞𝜩 
𝐒𝐜𝐨𝐫𝐞 𝐯𝐚𝐥𝐮𝐞𝐬 

𝐑𝐚𝐧𝐤𝐢𝐧𝐠𝐬  
𝑩𝟭 𝑩𝟐 𝑩𝟑 𝑩𝟒 

𝟐 −𝟎. 𝟐𝟑𝟔𝟓 −𝟎. 𝟐𝟒𝟓𝟕 −𝟎. 𝟐𝟐𝟎𝟑 −𝟎. 𝟐𝟐𝟐𝟔 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟐 ≻ 𝑩𝟭 

𝟒 −𝟎. 𝟭𝟖𝟕𝟖 −𝟎. 𝟎𝟗𝟎𝟭 −𝟎. 𝟭𝟔𝟔𝟐 −𝟎. 𝟭𝟔𝟖𝟐 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 

𝟓 −𝟎. 𝟭𝟔𝟗𝟑 −𝟎. 𝟭𝟕𝟖 −𝟎. 𝟭𝟒𝟓𝟗 −𝟎. 𝟭𝟒𝟕𝟖 𝑩𝟒 ≻ 𝑩𝟑 ≻ 𝑩𝟭 ≻ 𝑩𝟐 

𝟕 −𝟎. 𝟭𝟑𝟗𝟔 −𝟎. 𝟭𝟒𝟕𝟒 −𝟎. 𝟭𝟭𝟑𝟓 −𝟎. 𝟭𝟭𝟓𝟒 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 

𝟖 −𝟎. 𝟭𝟐𝟕𝟒 −𝟎. 𝟭𝟑𝟒𝟔 −𝟎. 𝟭𝟎𝟎𝟗 −𝟎. 𝟭𝟎𝟐𝟭 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 

𝟗 −𝟎. 𝟭𝟭𝟔𝟒 −𝟎.𝟭𝟐𝟑𝟭 −𝟎. 𝟎𝟖𝟖𝟒 −𝟎. 𝟎𝟗𝟎𝟐 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 

𝟭𝟐 −𝟎. 𝟎𝟖𝟖𝟕 −𝟎. 𝟎𝟗𝟒𝟭 −𝟎. 𝟎𝟓𝟖𝟕 −𝟎. 𝟎𝟔𝟎𝟓 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 

 
Table 5 
Impact of 𝛤𝛯 under the IVCTSFHWG operator 

Inputs of 𝜞𝜩 
𝑺𝒄𝒐𝒓𝒆 𝒗𝒂𝒍𝒖𝒆𝒔 

𝑹𝒂𝒏𝒌𝒊𝒏𝒈 
𝑩𝟭 𝑩𝟐 𝑩𝟑 𝑩𝟒 

𝟐 0.0646 0.0649 0.084 0.0825 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 
𝟒 0.0𝟣29 0.0𝟣𝟣3 0.0377 0.0362 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 
𝟓 -0.007𝟣 -0.0096 0.0𝟣92 0.0𝟣77 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 
𝟕 -0.0404 -0.0445 -0.0𝟣𝟣8 -0.0𝟣34 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 
𝟖 -0.0546 -0.0595 -0.0253 -0.0269 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 
𝟗 -0.0677 -0.073𝟣 -0.0378 -0.03937 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 
𝟭𝟐 -0.𝟣0𝟣7 -0.𝟣086 -0.0705 -0.0720 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 
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We can see from Table 4 and Table 5 that the overall ranking of alternatives remains consistent, 
with 𝐵3 as the optimal alternative. As a result, the devised technique has a high degree of stability 
w.r.t. the 𝛤𝛯 inputs. 

 
7.2. Comparative Analysis 

 
In this section, we compare our proposed scheme with several AOs to prove the efficiency and 

superiority of the recommended method. Ali et al. [36] initiated a MADM approach using T-spherical 
fuzzy AOs. Ullah et al. [31] studied T-spherical fuzzy Hamacher weighted averaging (T-SFHWA) and   
T-spherical fuzzy Hamacher weighted geometric (T-SFHWG) operators with application to the 
evaluation of the performance of search and rescue robots. We resolved the previously stated MADM 
problem by employing the methods of [32, 37], and the outcomes are exhibited in Table 6.  
 
Table 6 
Ranking of the alternatives 

Operators 
Score values 

𝑹𝒂𝒏𝒌𝒊𝒏𝒈 𝒓𝒆𝒔𝒖𝒍𝒕 
𝑩𝟭 𝑩𝟐 𝑩𝟑 𝑩𝟒 

𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑨 𝟎. 𝟎𝟓𝟎𝟗 𝟎. 𝟎𝟒𝟐𝟑 𝟎. 𝟎𝟖𝟭𝟖 𝟎. 𝟎𝟖𝟎𝟔 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 
𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑮 −𝟎. 𝟑𝟖𝟎𝟕 −𝟎. 𝟑𝟖𝟑𝟗 −𝟎. 𝟑𝟒𝟖𝟗 −𝟎. 𝟑𝟓𝟭𝟓 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟏 ≻ 𝑩𝟐 

CTSFWA [36] −𝟎. 𝟭𝟭𝟔𝟒 −𝟎. 𝟭𝟐𝟑𝟭 −𝟎. 𝟎𝟖𝟖𝟒 −𝟎. 𝟎𝟗𝟎𝟐 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 

𝑪𝑻𝑺𝑭𝑾𝑮 [36] −𝟎. 𝟎𝟔𝟕𝟕 −𝟎. 𝟎𝟕𝟑𝟭 −𝟎. 𝟎𝟑𝟕𝟖 −𝟎. 𝟎𝟑𝟗𝟑𝟕 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟏 ≻ 𝑩𝟐 

𝐓 − 𝐒𝐅𝐇𝐖𝐀 [31] −𝟎. 𝟎𝟖𝟖𝟕 −𝟎. 𝟎𝟗𝟒𝟭 −𝟎. 𝟎𝟓𝟖𝟕 −𝟎. 𝟎𝟔𝟎𝟓 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟭 ≻ 𝑩𝟐 

𝐓 − 𝐒𝐅𝐇𝐖𝐆 [31] −𝟎. 𝟭𝟎𝟭𝟕 −𝟎. 𝟭𝟎𝟖𝟔 −𝟎. 𝟎𝟕𝟎𝟓 −𝟎. 𝟎𝟕𝟐0 𝑩𝟑 ≻ 𝑩𝟒 ≻ 𝑩𝟏 ≻ 𝑩𝟐 

 
According to Table 6, it becomes evident that the ranking orders acquired through these methods 

and the developed scheme are identical. This reveals that the designed MADM approach is valid. 
Also, the results are graphically plotted in Figure 1.  

 

 
Fig. 1. Ranking of different methods 
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8. Conclusions 
 

The IVCTSFS model is a generalization of TSFS and CFS. The Hamacher AOs are more flexible and 
powerful in many issues involving uncertainty, as they incorporate a regulatory parameter that can 
play a vital role in managing extreme values. Having a generic nature, both IVCTSFSs and Hamacher 
AOs require further study to be conducted. In this article, we established several Hamacher 
operational rules for IVCTSFNs. By using the Hamacher operational laws, we constructed a class of 
averaging and geometric AOs, namely the IVCTSFHWA, IVCTSFHOWA, IVCTSFHHWA, IVCTSFHWG, 
IVCTSFOWG, and IVCTSFHHWG operators. We also provided several cardinal features like 
idempotency, monotonicity, and boundedness. Meanwhile, we have designed a MADM method 
using the proposed operator.  

To illustrate the proficiency and legitimacy of the developed method, we considered a MADM 
problem and solved it within the framed method. The influence of Hamacher variable parameters on 
the decision-making process is scrutinized, and the stability of ranking outcomes is deliberated. 
Lastly, a comparative analysis of rankings obtained using the projected and prevailing AOs 
underscored the significance of the designed methodology. 

In our future work, we will extend our proposed work within the framework of complex 
neutrosophic hesitant fuzzy sets and spherical linear Diophantine fuzzy sets. 
 
Appendix-1: Proof of Theorem 1 

We will use the mathematical induction method to prove the desired result.  
For Ɩ =  2,  we have: 

𝜞𝟭𝓣𝟭 ⊕ 𝜞𝟐𝓣𝟐  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

√
(𝟭+(ℕ−𝟭)𝕞𝓪

ℚ
𝟭
)
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)
𝜞𝟭

(𝟭+(ℕ−𝟭)𝕞𝓪
ℚ

𝟭
)
𝜞𝟭

−(ℕ−𝟭)(𝟭−𝕞𝓪
ℚ

𝟭
)
𝜞𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝝑𝓪

ℚ
𝟭
)
𝜞𝟭

−(𝟭−𝝑𝓪
ℚ

𝟭
)
𝜞𝟭

(𝟭+(ℕ−𝟭)𝝑𝓪
ℚ

𝟭
)
𝜞𝟭

−(ℕ−𝟭)(𝟭−𝝑𝓪
ℚ

𝟭
)
𝜞𝟭

ℚ

,

√
(𝟭+(ℕ−𝟭)𝕦𝓪

ℚ
𝟭
)
𝜞𝟭

−(𝟭−𝕦𝓪
ℚ

𝟭
)
𝜞𝟭

(𝟭+(ℕ−𝟭)𝕦𝓪
ℚ

𝟭
)
𝜞𝟭

−(ℕ−𝟭)(𝟭−𝕦𝓪
ℚ

𝟭
)
𝜞𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝜷𝓪

ℚ
𝟭
)
𝜞𝟭

−(𝟭−𝜷𝓪
ℚ

𝟭
)
𝜞𝟭

(𝟭+(ℕ−𝟭)𝜷𝓪
ℚ

𝟭
)
𝜞𝟭

−(ℕ−𝟭)(𝟭−𝜷𝓪
ℚ

𝟭
)
𝜞𝟭

ℚ

]
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 

√ℕ  
ℚ

(𝕞𝖎𝟭)
𝜞𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝕞𝖎𝟭

ℚ
))

𝜞𝟭

+(ℕ−𝟭)(𝕞𝖎𝟭

ℚ
)
𝜞𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝝑𝖎𝟭

)
𝜞𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝝑
𝖎𝟭

ℚ
))

𝜞𝟭
+(ℕ−𝟭)(𝝑

𝖎𝟭

ℚ
)
𝜞𝟭ℚ

,

√ℕ  
ℚ

(𝕦𝖎𝟭)
𝜞𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝕦𝖎𝟭

ℚ
))

𝜞𝟭

+(ℕ−𝟭)(𝕦𝖎𝟭

ℚ
)
𝜞𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝜷𝖎𝟭

)
𝜞𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝜷
𝖎𝟭

ℚ
))

𝜞𝟭
+(ℕ−𝟭)(𝜷

𝖎𝟭

ℚ
)
𝜞𝟭ℚ

]
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√ℕ  
ℚ

(𝕞𝒏𝟭)
𝜞𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝕞𝒏𝟭

ℚ
))

𝜞𝟭
+(ℕ−𝟭)(𝕞𝒏𝟭

ℚ
)
𝜞𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝝑𝒏𝟭)

𝜞𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝝑𝒏𝟭
ℚ

))

𝜞𝟭
+(ℕ−𝟭)(𝝑𝒏𝟭

ℚ
)
𝜞𝟭

ℚ

,

√ℕ  
ℚ

(𝕦𝒏𝟭)
𝜞𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝕦𝒏𝟭

ℚ
))

𝜞𝟭
+(ℕ−𝟭)(𝕦𝒏𝟭

ℚ
)
𝜞𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝜷𝒏𝟭)

𝜞𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝜷𝒏𝟭
ℚ

))

𝜞𝟭
+(ℕ−𝟭)(𝜷𝒏𝟭

ℚ
)
𝜞𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

)
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⊕

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

√
(𝟭+(ℕ−𝟭)𝕞𝓪

ℚ
𝟐
)
𝜞𝟐

−(𝟭−𝕞𝓪
ℚ

𝟐
)
𝜞𝟐

(𝟭+(ℕ−𝟭)𝕞𝓪
ℚ

𝟐
)
𝜞𝟐

−(ℕ−𝟭)(𝟭−𝕞𝓪
ℚ

𝟐
)
𝜞𝟐

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝝑𝓪

ℚ
𝟭
)
𝜞𝟐

−(𝟭−𝝑𝓪
ℚ

𝟭
)
𝜞𝟐

(𝟭+(ℕ−𝟭)𝝑𝓪
ℚ

𝟭
)
𝜞𝟐

−(ℕ−𝟭)(𝟭−𝝑𝓪
ℚ

𝟭
)
𝜞𝟐

ℚ

,

√
(𝟭+(ℕ−𝟭)𝕦𝓪

ℚ
𝟐
)
𝜞𝟐

−(𝟭−𝕦𝓪
ℚ

𝟐
)
𝜞𝟐

(𝟭+(ℕ−𝟭)𝕦𝓪
ℚ

𝟐
)
𝜞𝟐

−(ℕ−𝟭)(𝟭−𝕦𝓪
ℚ

𝟐
)
𝜞𝟐

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝜷𝓪

ℚ
𝟭
)
𝜞𝟐

−(𝟭−𝜷𝓪
ℚ

𝟭
)
𝜞𝟐

(𝟭+(ℕ−𝟭)𝜷𝓪
ℚ

𝟭
)
𝜞𝟐

−(ℕ−𝟭)(𝟭−𝜷𝓪
ℚ

𝟭
)
𝜞𝟐

ℚ

]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

√ℕ  
ℚ

(𝕞𝖎𝟐)
𝜞𝟐

√(𝟭+(ℕ−𝟭)(𝟭−𝕞𝖎𝟐

ℚ
))

𝜞𝟐

+(ℕ−𝟭)(𝕞𝖎𝟐

ℚ
)
𝜞𝟐

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝝑𝖎𝟐

)
𝜞𝟐

√(𝟭+(ℕ−𝟭)(𝟭−𝝑
𝖎𝟐

ℚ
))

𝜞𝟐
+(ℕ−𝟭)(𝝑

𝖎𝟐

ℚ
)
𝜞𝟐

ℚ

,

√ℕ  
ℚ

(𝕦𝖎𝟐)
𝜞𝟐

√(𝟭+(ℕ−𝟭)(𝟭−𝕦𝖎𝟐

ℚ
))

𝜞𝟐

+(ℕ−𝟭)(𝕦𝖎𝟐

ℚ
)
𝜞𝟐

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝜷𝖎𝟐

)
𝜞𝟐

√(𝟭+(ℕ−𝟭)(𝟭−𝜷
𝖎𝟐

ℚ
))

𝜞𝟐
+(ℕ−𝟭)(𝜷

𝖎𝟐

ℚ
)
𝜞𝟐

ℚ

]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

√ℕ  
ℚ

(𝕞𝒏𝟐)
𝜞𝟐

√(𝟭+(ℕ−𝟭)(𝟭−𝕞𝒏𝟐

ℚ
))

𝜞𝟐
+(ℕ−𝟭)(𝕞𝒏𝟐

ℚ
)
𝜞𝟐

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝝑𝒏𝟐)

𝜞𝟐

√(𝟭+(ℕ−𝟭)(𝟭−𝝑𝒏𝟐
ℚ

))

𝜞𝟐
+(ℕ−𝟭)(𝝑𝒏𝟐

ℚ
)
𝜞𝟐

ℚ

,

√ℕ  
ℚ

(𝕦𝒏𝟐)
𝜞𝟐

√(𝟭+(ℕ−𝟭)(𝟭−𝕦𝒏𝟐

ℚ
))

𝜞𝟐
+(ℕ−𝟭)(𝕦𝒏𝟐

ℚ
)
𝜞𝟐

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝜷𝒏𝟐)

𝜞𝟐

√(𝟭+(ℕ−𝟭)(𝟭−𝜷𝒏𝟐
ℚ

))

𝜞𝟐
+(ℕ−𝟭)(𝜷𝒏𝟐

ℚ
)
𝜞𝟐

ℚ

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞𝓪𝜩

ℚ
 )

𝜞𝜩
−∏ (𝟭−𝕞𝓪𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞𝓪𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞𝓪𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝝑𝓪𝜩

ℚ
 )

𝜞𝜩
−∏ (𝟭−𝝑𝓪𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑𝓪𝜩
ℚ

)
𝜞𝜩𝟐

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞𝓪𝜩
ℚ

)
𝜞𝜩𝟐

𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦𝓪𝜩

ℚ
 )

𝜞𝜩
−∏ (𝟭−𝕦𝓪𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦𝓪𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦𝓪𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝜷𝓪𝜩

ℚ
 )

𝜞𝜩
−∏ (𝟭−𝜷𝓪𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷𝓪𝜩
ℚ

)
𝜞𝜩𝟐

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝜷𝓪𝜩
ℚ

)
𝜞𝜩𝟐

𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞𝖎𝜩)
𝜞𝜩𝟐

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝕞𝖎𝜩

ℚ
))

𝜞𝜩

+( ℕ−𝟭 ) ∏ (𝕞𝖎𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝝑𝖎𝜩

)
𝜞𝜩𝟐

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝝑
𝖎𝜩

ℚ
))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝝑

𝖎𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦𝖎𝜩)
𝜞𝜩𝟐

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝕦𝖎𝜩

ℚ
))

𝜞𝜩

+( ℕ−𝟭 ) ∏ (𝕦𝖎𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝜷𝖎𝜩

)
𝜞𝜩𝟐

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝜷
𝖎𝜩

ℚ
))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝜷

𝖎𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞𝒏𝜩)
𝜞𝜩𝟐

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝕞𝒏𝜩

ℚ
))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝕞𝒏𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝝑𝒏𝜩)

𝜞𝜩𝟐
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝝑𝒏𝜩
ℚ

))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝝑𝒏𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦𝒏𝜩)
𝜞𝜩𝟐

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝕦𝒏𝜩

ℚ
))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝕦𝒏𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝜷𝒏𝜩)

𝜞𝜩𝟐
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝜷𝒏𝜩
ℚ

))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝜷𝒏𝜩

ℚ
)
𝜞𝜩𝟐

𝜩=𝟭
𝟐
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  

 
This reveals that for Ɩ = 2 the result is valid.  
Now, we can prove the result is true for Ɩ = 𝑘 ⊕ 𝟣and Ɩ = 𝑘. 
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𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑨(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝒌) ⊕ 𝓣𝒌+𝟭  

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞𝓪𝜩

ℚ
 )

𝜞𝜩
−∏ (𝟭−𝕞𝓪𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞𝓪𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭 +(ℕ−𝟭) ∏ (𝟭−𝕞𝓪𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝝑𝓪𝜩

ℚ
 )

𝜞𝜩
−∏ (𝟭−𝝑𝓪𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑𝓪𝜩
ℚ

)
𝜞𝜩𝒌

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝝑𝓪𝜩
ℚ

)
𝜞𝜩𝒌

𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦𝓪𝜩

ℚ
 )

𝜞𝜩
−∏ (𝟭−𝕦𝓪𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦𝓪𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦𝓪𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝜷𝓪𝜩

ℚ
 )

𝜞𝜩
−∏ (𝟭−𝜷𝓪𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷𝓪𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝜷𝓪𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞𝖎𝜩)
𝜞𝜩𝒌

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝕞𝖎𝜩

ℚ
))

𝜞𝜩

+( ℕ−𝟭 ) ∏ (𝕞𝖎𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝝑𝖎𝜩

)
𝜞𝜩𝒌

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝝑
𝖎𝜩

ℚ
))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝝑

𝖎𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦𝖎𝜩)
𝜞𝜩𝒌

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝕦𝖎𝜩

ℚ
))

𝜞𝜩

+( ℕ−𝟭 ) ∏ (𝕦𝖎𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝜷𝖎𝜩

)
𝜞𝜩𝒌

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝜷
𝖎𝜩

ℚ
))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝜷

𝖎𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞𝒏𝜩)
𝜞𝜩𝒌

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝕞𝒏𝜩

ℚ
))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝕞𝒏𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝝑𝒏𝜩)

𝜞𝜩𝒌
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝝑𝒏𝜩
ℚ

))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝝑𝒏𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦𝒏𝜩)
𝜞𝜩𝒌

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝕦𝒏𝜩

ℚ
))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝕦𝒏𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝜷𝒏𝜩)

𝜞𝜩𝒌
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)( 𝟭−𝜷𝒏𝜩
ℚ

))

𝜞𝜩
+( ℕ−𝟭 ) ∏ (𝜷𝒏𝜩

ℚ
)
𝜞𝜩𝒌

𝜩=𝟭
𝒌
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

⊕

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

√
(𝟭+(ℕ−𝟭)𝕞𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

−(𝟭−𝕞𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

(𝟭+(ℕ−𝟭)𝕞𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

+(ℕ−𝟭)(𝟭−𝕞𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝝑𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

−(𝟭−𝝑𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

(𝟭+(ℕ−𝟭)𝝑𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

+(ℕ−𝟭)(𝟭−𝝑𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ

,

√
(𝟭+(ℕ−𝟭)𝕦𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

−(𝟭−𝕦𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

(𝟭+(ℕ−𝟭)𝕦𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

+(ℕ−𝟭)(𝟭−𝕦𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
(𝟭+(ℕ−𝟭)𝜷𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

−(𝟭−𝜷𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

(𝟭+(ℕ−𝟭)𝜷𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

+(ℕ−𝟭)(𝟭−𝜷𝓪𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 

√ℕ  
ℚ

(𝕞𝖎𝒌+𝟭
)
𝜞𝒌+𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝕞𝖎𝒌+𝟭

ℚ
))

𝜞𝒌+𝟭

+(ℕ−𝟭)(𝕞𝖎𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝝑𝖎𝒌+𝟭

)
𝜞𝒌+𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝝑
𝖎𝒌+𝟭

ℚ
))

𝜞𝒌+𝟭
+(ℕ−𝟭)(𝝑

𝖎𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ

,

√ℕ  
ℚ

(𝕦𝖎𝒌+𝟭
)
𝜞𝒌+𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝕦𝖎𝒌+𝟭

ℚ
))

𝜞𝒌+𝟭

+(ℕ−𝟭)(𝕦𝖎𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝜷𝖎𝒌+𝟭

)
𝜞𝒌+𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝜷
𝖎𝒌+𝟭

ℚ
))

𝜞𝒌+𝟭
+(ℕ−𝟭)(𝜷

𝖎𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 

√ℕ  
ℚ

(𝕞𝒏𝒌+𝟭
)
𝜞𝒌+𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝕞𝒏𝒌+𝟭

ℚ
))

𝜞𝒌+𝟭
+(ℕ−𝟭)(𝕞𝒏𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝝑𝒏𝒌+𝟭)

𝜞𝒌+𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝝑𝒏𝒌+𝟭

ℚ
))

𝜞𝒌+𝟭
+(ℕ−𝟭)(𝝑𝒏𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ

,

√ℕ  
ℚ

(𝕦𝒏𝒌+𝟭
)
𝜞𝒌+𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝕦𝒏𝒌+𝟭

ℚ
))

𝜞𝒌+𝟭
+(ℕ−𝟭)(𝕦𝒏𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ  

ℚ
(𝜷𝒏𝒌+𝟭)

𝜞𝒌+𝟭

√(𝟭+(ℕ−𝟭)(𝟭−𝜷𝒏𝒌+𝟭

ℚ
))

𝜞𝒌+𝟭
+(ℕ−𝟭)(𝜷𝒏𝒌+𝟭

ℚ
)
𝜞𝒌+𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 



Management Science Advances 

Volume 2, Issue 1 (2025) 69-90 

88 
 

 

𝑰𝑽𝑪𝑻𝑺𝑭𝑯𝑾𝑨(𝓣𝟭, 𝓣𝟐, 𝓣𝟑, …𝓣𝒌+𝟭) =  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

√
∏ (𝟭+(ℕ−𝟭)𝕞𝓪𝜩

ℚ
)
𝜞𝜩

−∏ (𝟭−𝕞𝓪𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕞𝓪𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕞𝓪𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝝑𝓪𝜩

ℚ
)
𝜞𝜩

−∏ (𝟭−𝝑𝓪𝜩
ℚ

)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝝑𝓪𝜩
ℚ

)
𝜞𝜩𝒌+𝟭

𝜩=𝟭 +(ℕ−𝟭) ∏ (𝟭−𝝑𝓪𝜩
ℚ

)
𝜞𝜩𝒌+𝟭

𝜩=𝟭

ℚ

,

√
∏ (𝟭+(ℕ−𝟭)𝕦𝓪𝜩

ℚ
)
𝜞𝜩

−∏ (𝟭−𝕦𝓪𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝕦𝓪𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭 +(ℕ−𝟭)∏ (𝟭−𝕦𝓪𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭

ℚ

. 𝒆

𝟐𝝅𝖎 √
∏ (𝟭+(ℕ−𝟭)𝜷𝓪𝜩

ℚ
)
𝜞𝜩

−∏ (𝟭−𝜷𝓪𝜩
ℚ

)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

∏ (𝟭+(ℕ−𝟭)𝜷𝓪𝜩
ℚ

)
𝜞𝜩𝒌+𝟭

𝜩=𝟭 +(ℕ−𝟭) ∏ (𝟭−𝜷𝓪𝜩
ℚ

)
𝜞𝜩𝒌+𝟭

𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞𝖎𝜩)
𝜞𝜩𝒌+𝟭

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞𝖎𝜩

ℚ
))

𝜞𝜩 

+( ℕ−𝟭 )∏ (𝕞𝖎𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝝑𝖎𝜩

)
𝜞𝜩𝒌+𝟭

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝝑
𝖎𝜩

ℚ
))

𝜞𝜩
+( ℕ−𝟭 )∏ (𝝑

𝖎𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦𝖎𝜩)
𝜞𝜩𝒌+𝟭

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦𝖎𝜩

ℚ
))

𝜞𝜩 

+( ℕ−𝟭 )∏ (𝕦𝖎𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝜷𝖎𝜩

)
𝜞𝜩𝒌+𝟭

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝜷
𝖎𝜩

ℚ
))

𝜞𝜩
+( ℕ−𝟭 )∏ (𝜷

𝖎𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

√ℕ 
ℚ

∏ (𝕞𝒏𝜩)
𝜞𝜩𝒌+𝟭

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕞𝒏𝜩

ℚ
))

𝜞𝜩 
+( ℕ−𝟭 )∏ (𝕞𝒏𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝝑𝒏𝜩)

𝜞𝜩𝒌+𝟭
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝝑𝒏𝜩
ℚ

))

𝜞𝜩
+( ℕ−𝟭 )∏ (𝝑𝒏𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

ℚ

,

√ℕ 
ℚ

∏ (𝕦𝒏𝜩)
𝜞𝜩𝒌+𝟭

𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝕦𝒏𝜩

ℚ
))

𝜞𝜩 
+( ℕ−𝟭 )∏ (𝕦𝒏𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

ℚ
. 𝒆

𝟐𝝅𝖎
√ℕ 

ℚ
∏ (𝜷𝒏𝜩)

𝜞𝜩𝒌+𝟭
𝜩=𝟭

√∏ (𝟭+(ℕ−𝟭)(𝟭−𝜷𝒏𝜩
ℚ

))

𝜞𝜩
+( ℕ−𝟭 )∏ (𝜷𝒏𝜩

ℚ
)
𝜞𝜩𝒌+𝟭

𝜩=𝟭
𝒌+𝟭
𝜩=𝟭

ℚ

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
This show that the result is valid for Ɩ = 𝑘 ⊕ 𝟣. So, according to mathematical induction, it is 

proven that the result is true for all positive integers Ɩ. 
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